

USER MANUAL

MSI350 SERIES INVERTER

Preface

Thank you for choosing MSI350 series inverter.

MSI350 is a high-performance and multipurpose inverter aiming to integrate synchronous motor drive with asynchronous motor drive, and torque control, speed control with position control. It is armed with advanced vector control technology and the latest digital processor dedicated for motor control, thus enhancing product reliability and adaptability to the environment. MSI350 series inverter adopts customized and industrialized design to realize excellent control performance through optimized functions and flexible applications.

In order to meet diversified customer demands, MSI350 series inverter provides abundant extension cards including programmable extension card, PG card, communication card and I/O extension card to achieve various functions as needed

The programmable extension card adopts the mainstream development environment for customers to carry out secondary development easily, fulfilling varied customized needs and reducing customer cost.

PG card supports a variety of encoders like incremental encoders and resolver-type encoders, in addition, it also supports pulse reference and frequency-division output. PG card adopts digital filter technology to improve EMC performance and to realize stable transmission of the encoder signal over a long distance. It is equipped with encoder offline detection function to contain the impact of system faults.

MSI350 series inverter supports multiple kinds of popular communication modes to realize complicated system solutions. It can be connected to the internet with optional wireless communication card, by which users can monitor the inverter state anywhere any time via mobile APP.

MSI350 series inverter uses high power density design. Some power ranges carry built-in DC reactor and brake unit to save installation space. Through overall EMC design, it can satisfy the low noise and low electromagnetic interference requirements to cope with challenging grid, temperature, humidity and dust conditions, thus greatly improving product reliability.

This operation manual presents installation wiring, parameter setup, fault diagnosis and trouble shooting, and precautions related to daily maintenance. Read through this manual carefully before installation to ensure MSI350 series inverter is installed and operated in a proper manner to give full play to its excellent performance and powerful functions.

Our company reserves the right to update the information of our products.

Contains

 Safety precauti 	ons	13
1.1 What this cha	pter contains	13
1.2 Safety definiti	on	13
1.3 Warning symb	pols	13
1.4 Safety guideli	nes	14
	and installation	
	sioning and running	
	ance and component replacement	
1.4.4 What to	do after Scrapping	17
2. Quick startup_		18
2.1 What this cha	pter contains	18
2.2 Unpack inspe	ction	18
2.4 Application co	nfirmation	19
2.5 Environment	confirmation	19
2.6 Installation co	nfirmation	19
2.7 Basic commis	sioning	20
3. Product overvi	ew	21
3.1 What this cha	pter contains	21
3.2 Basic principle	e	21
3.3 Product speci	fication	23
3.4 Product name	plate	25
3.5 Type designat	tion key	25

	3.6 Rate	ed value	26
	3.6.1	AC 3PH 380V(-15%)-440V(+10%) rated value	26
	3.6.2	AC 3PH 520V (-15%)–690V (+10%) rated value	27
	3.7 Stru	cture diagram	28
4.	Install	ation guide	29
	4.1 Wha	t this chapter contains	29
	4.2 Mec	hanical installation	29
	4.2.1	Installation environment	29
	4.2.2	Installation direction	30
	4.2.3	Installation mode	31
	4.2.4	Single-unit installation	32
	4.2.5	Multiple-unit installation	32
	4.2.6	Vertical installation	34
	4.2.7	Tilted installation	35
	4.3 Stan	dard wiring of main circuit	36
	4.3.1	Wiring diagram of main circuit	36
	4.3.2	Main circuit terminal diagram	37
	4.3.3	Wiring process of the main circuit terminals	42
	4.4 Stan	dard wiring of control circuit	43
	4.4.1	Wiring diagram of basic control circuit	43
	4.4.2	Input/output signal connection diagram	45
	4.5 Wirir	ng protection	46
	4.5.1	Protect the inverter and input power cable in short-circuit_	46
	4.5.2	Protect the motor and motor cable in short circuit	47
	4.5.3	Protect motor and prevent thermal overload	47
	4.5.4	Bypass connection	47
5.	Basic	operation instructions	49

5.1 What this chapter contains		
5.2 Keypad introduction		
5.3 Key _l	pad display	53
5.4 Stop	parameter display state	53
5.5 Run	ning parameter display state	54
5.6 Faul	t alarm display state	54
5.7 Key	pad operation	55
5.7.1	Enter/exit menu	55
5.7.2	List edit	60
5.7.3	Add parameters to the parameter list displayed in stop	/running
state	61	
5.7.4	Add parameter to common parameter setup list	62
5.7.5	Parameter selection edit interface	
5.7.6	Parameter setup edit interface	
5.7.7	State monitoring interface	64
5.7.8	Motor parameter autotuning	64
5.7.9	Parameter backup	65
5.7.10	System setup	66
5.7.11	Power-on guiding settings	66
5.8 Basi	c operation instruction	69
	What this section contains	
5.8.2	Common commissioning procedures	70
5.8.3	Vector control	74
5.8.4	SVPWM control mode	79
	Torque control	
5.8.6	Motor parameter	94
5.8.7	Start/stop control	100
588	Frequency setup	105

	5.8.9	Analog input	109
	5.8.10	Analog output	112
	5.8.11	Digital input	116
	5.8.12	2 Digital output	123
	5.8.13	Simple PLC	128
	5.8.14	Multi-step speed running	130
	5.8.15	5 PID control	132
	5.8.16	Run at wobbling frequency	137
	5.8.17	Local encoder input	139
	5.8.18	B Commissioning procedures for position control and sp	indle
	positio	oning function	
	5.8.19	Pault handling	146
6.	Funct	ion parameter list	151
	6.1 Wha	t this chapter contains	151
	6.2 Fund	ction parameter list	151
7.	Troub	leshooting	251
	7.1 Wha	t this chapter contains	251
	7.2 Indic	cations of alarms and faults	251
	7.3 Faul	t reset	251
	7.4 Faul	t history	251
	7.5 Inve	rter faults and solutions	251
	7.5.1	Details of faults and solutions	252
	7.5.2	Other state	259
	7.6 Anal	ysis on common faults	260
	7.6.1	Motor fails to work	260
	7.6.2	Motor vibrates	261
	763	Overvoltage	262

	7.6.4	Undervoltage	_ 263
	7.6.5	Unusual heating of motor	264
	7.6.6	Inverter overheating	265
	7.6.7	Motor stalls during ACC	266
	7.6.8	Overcurrent	_267
	7.7 Cou	ntermeasures on common interference	268
	7.7.1	Interference on meter switches and sensors	268
	7.7.2	Interference on communication	269
	7.7.3	Failure to stop and indicator shimmering due to motor cable)
	coupli	ng	270
	7.7.4	Leakage current and interference on RCD	271
	7.7.5	Live device chassis	272
8.	Maint	enance and hardware fault diagnosis	273
	8.1 Wha	t this chapter contains	273
	8.2 Perio	odical inspection	273
	8.3 Cool	ling fan	275
	8.4 Cap	acitor	276
		Capacitor reforming	
	8.4.2	Electrolitic capacitor replacement	278
	8.5 Pow	er cable	_278
9.	Comn	nunication protocol	279
	9.1 Wha	t this chapter contains	279
	9.2 Mod	bus protocol introduction	279
	9.3 Appl	ication of Modbus	279
	9.3.1	RS485	279
	032	RTI I mode	282

9.4 RTU command code and communication data	_ 286
9.4.1 Command code: 03H, reading N words (continuously read	ling a
maximum of 16 words)	_ 286
9.4.2 Command code: 06H, writing a word	_ 287
9.4.3 Command code: 08H, diagnosis	_ 288
9.4.4 Command code: 10H, continuous writing	_ 289
9.4.5 Data address definition	_ 290
9.4.6 Fieldbus scale	_ 294
9.4.7 Error message response	_ 295
9.4.8 Read/Write operation example	_ 297
9.5 Common communication faults	_ 302
Appendix A Extension cards	_ 303
A.1 Model definition	_ 303
A.2 Dimensions and installation	_ 309
A.3 Wiring	_ 312
A.4 IO extension card function description	_ 312
A.4.1 IO extension card—EC-IO501-00	
A.5 PG extension card function description	_ 315
A.5.1 Multi-function incremental PG card—EC-PG505-12	_ 315
A.5.2 UVW incremental PG card—EC-PG503-05	_ 319
A.5.3 Resolver PG card—EC-PG504-00	_ 322
A5.4 24 V multi-function incremental PG card——EC-PG505-24	_ 324
A5.5 Sin/Cos PG card——EC-PG502	_ 326
A.6 Communication card function description	_ 329
A.6.1 Bluetooth communication card—EC-TX501 and WIFI	
communication card—EC- TX502	_ 329
A.6.2 CANopen communication card—EC-TX505 and CAN	
master/slave control communication card FC- TX511	332

A.6.3 Ethernet communication card—EC-TX504	_ 333
A.6.4 PROFIBUS-DP communication card—EC-TX503	_ 334
A.6.5 PROFINET communication card——EC- TX509	_ 336
A.7 Programmable extension card function description	_ 339
A.7.1 Programmable extension card—EC-PC501-00	_ 339
Appendix B Technical data	_ 342
B.1 What this chapter contains	_ 342
B.2 Derated application	_ 342
B.2.1 Capacity	
B.2.2 Derating	
B.3 Grid specifications	_ 343
B.4 Motor connection data	_ 343
B.4.1 EMC compatibility and motor cable length	
B.5 Application standards	_ 344
B.5.1 CE marking	
B.5.2 EMC compliance declaration	_ 345
B.6 EMC regulations	_ 345
B.6.1 Inverter category of C2	_ 345
B.6.2 Inverter category of C3	_ 346
Appendix C Dimension drawings	_ 347
C.1 What this chapter contains	_ 347
C.2 Keypad structure	_ 347
C.2.1 Structure diagram	_ 347
C.2.2 Keypad installation bracket	_ 347
C.3 Inverter structure	_ 348
C.4 Dimensions of Inverters of AC 3PH 380V (-15%)–440V (+10%)	_ 349

C.4.1 Wall-mounting dimensions	_ 349
C.4.2 Flange installation dimensions	_ 351
C.4.3 Floor installation dimensions	
C.5 Dimensions of Inverters of AC 3PH 520V (-15%)–690V (+10%) C.5.1 Wall-mounting dimensions	
C.5.2 Flange installation dimensions	_ 355
C.5.3 Floor installation dimensions	_ 356
Appendix D Dimension drawings	_ 358
D.1 What this chapter contains	_ 358
D.2 Wiring of peripheral accessories	_ 358
D.3 Power supply	_ 360
D.4 Cables	_ 360
D.4.1 Power cables	_ 360
D.4.2 Control cables	_ 361
D.4.3 Cable arrangement	_ 365
D.4.4 Insulation inspection	_ 366
D.5 Breaker and electromagnetic contractor	_ 366
D.5.1 Breakers and electromagnetic contactors for AC 3PH 380V	•
15%)–440V (+10%)	_ 367
D.5.2 Breakers and electromagnetic contactors for AC 3PH 520V	(-
15%)–690V (+10%)	_ 367
D.6 Reactors	_ 368
D.6.1 Reactors for AC 3PH 380V (-15%)-440V (+10%)	_ 369
D.6.2 Reactors for AC 3PH 520V (-15%)–690V (+10%)	_ 370
D.7 Filters	_ 372
D.7.1 Filter model description	_ 372
D.7.2 Filters for AC 3PH 380V (-15%)-440V (+10%)	373

D.7.3 Filters for AC 3PH 520V (-15%)–690V (+10%)	374
D.8 Brake system	375
D.8.1 Brake component selection	375
D.8.2 Brake resistor cable selection	379
D.8.3 Brake resistor installation	379
Appendix E STO function description	381
E.1 STO function logic table	381
E.2 STO Channel delay description	382
E.3 STO function installation checklist	382
Appendix F Acronyms and abbreviations	383
Appendix G Further information	385
G.1 Product and service queries	385
G.2 Feedback on MORGENSEN inverter manuals	385
G 3 Documents on the internet	385

1. Safety precautions

1.1 What this chapter contains

Read this manual carefully and follow all safety precautions before moving, installing, operating and servicing the inverter. If these safety precautions are ignored, physical injury or death may occur, or damage may occur to the equipment.

If any physical injury or death or damage to the equipment occur due to neglect of the safety precautions in the manual, our company will not be responsible for any damages and we are not legally bound in any manner.

1.2 Safety definition

Danger: Serious physical injury or even death may occur if related requirements are not followed

Warning: Physical injury or damage to the equipment may occur if related requirements are not followed

Note: Procedures taken to ensure proper operation.

Qualified electricians: People working on the device should take part in professional electrical and safety training, receive the certification and be familiar with all steps and requirements of installing, commissioning, operating and maintaining the device to prevent any emergencies.

1.3 Warning symbols

Warnings caution you about conditions which can result in serious injury or death and/or damage to the equipment, and advice on how to avoid the danger. Following warning symbols are used in this manual.

Symbols	Name	Instruction	Abbreviation
A Danger	Danger	Serious physical injury or even death may occur if related requirements are not followed	4
Warning	Warning	Physical injury or damage to the equipment may occur if related requirements are not followed	\triangle
Forbid	Electrostatic discharge	Damage to the PCBA board may occur if related requirements are not followed	*3
<u></u> Hot	Hot sides	The base of the inverter may become hot. Do not touch.	

Symbols	Name	Instruction	Abbreviation
<u> </u>	As high voltage still presents in the capacitor after power off, wait for at least five minutes (or 15 min / 25 mi depending on the warning symbols the machine) after power off to prevelectric shock		<u>♠</u>
	Read manual	Read the operation manual before operating on the equipment	
Note	Note	Procedures taken to ensure proper operation	Note

1.4 Safety guidelines

- Only trained and qualified electricians are allowed to carry out related operations.
- Do not perform wiring, inspection or component replacement when power supply is applied. Ensure all the input power supplies are disconnected before wiring and inspection, and wait for at least the time designated on the inverter or until the DC bus voltage is less than 36V. The minimum waiting time is listed in the table below.

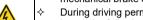
Inv	verter model	Minimum waiting time
380V	1.5kW-110kW	5 min
380V	132kW-315kW	15 min
380V	Above 355kW	25 min
660V	22kW-132kW	5 min
660V	160kW-350kW	15 min
660V	400kW-630kW	25 min

Do not refit the inverter unless authorized; otherwise, fire, electric shock or other injuries may occur.

The base of the radiator may become hot during running. Do not touch to avoid hurt.

The electrical parts and components inside the inverter are electrostatic. Take measures to prevent electrostatic discharge during related operation.

1.4.1 Delivery and installation


- Install the inverter on fire-retardant material and keep the inverter away from combustible materials.
- Connect the optional brake parts (brake resistors, brake units or feedback units) according to the wiring diagram.
- Do not operate on a damaged or incomplete inverter.
- Do not touch the inverter with wet items or body parts; otherwise, electric shock may occur.

- Select appropriate tools for delivery and installation to ensure a safe and proper running of the inverter and avoid physical injury or death. To ensure physical safety, the installation staff should take mechanical protective measures like wearing exposure shoes and working uniforms;
- Ensure to avoid physical shock or vibration during delivery and installation;
- ♦ Do not carry the inverter by its front cover only as the cover may fall off;
- ♦ Installation site should be away from children and other public places;
- The inverter cannot meet the requirements of low voltage protection in IEC61800-5-1 if the altitude of installation site is above 2000m;
- The inverter should be used in proper environment (see chapter 4.2.1 Installation environment for details);
- Prevent the screws, cables and other conductive parts from falling into the inverter;
- As leakage current of the inverter during running may exceed 3.5mA, ground properly and ensure the grounding resistance is less than 10Ω. The conductivity of PE grounding conductor is the same with that of the phase conductor (with the same cross sectional area).
- R, S and T are the power input terminals, and U, V and W are output motor terminals. Connect the input power cables and motor cables properly; otherwise, damage to the inverter may occur.

1.4.2 Commissioning and running

- Disconnect all power sources applied to the inverter before terminal wiring, and wait for at least the time designated on the inverter after disconnecting the power sources.
- High voltage presents inside the inverter during running. Do not carry out any operation on the inverter during running except for keypad setup. For products at voltage levels of 5 or 6, the control terminals form extra-low voltage circuits. Therefore, you need to prevent the control terminals from connecting to accessible terminals of other devices.
- The inverter may start up by itself when P01.21 (restart after power down) is set to 1. Do not get close to the inverter and motor.
- The inverter cannot be used as "Emergency-stop device".
- The inverter cannot act as an emergency brake for the motor; it is a must to install mechanical brake device.

- During driving permanent magnet synchronous motor, besides above-mentioned items, the following work must be done before installation and maintenance.
 - Disconnect all the input power sources including main power and control power.
 - Ensure the permanent-magnet synchronous motor has been stopped, and the voltage on output end of the inverter is lower than 36V.
 - After the permanent-magnet synchronous motor is stopped, wait for at least the time designated on the inverter, and ensure the voltage between "+" and "-" is lower than 36V.
 - 4. During operation, it is a must to ensure the permanent-magnet synchronous motor cannot run again by the action of external load; it is recommended to install effective external brake device or disconnect the direct electrical connection between permanent-magnet synchronous motor and the inverter.

- ♦ Do not switch on or switch off input power sources of the inverter frequently;
- For inverters that have been stored for a long time, set the capacitance and carry out inspection and pilot run on the inverter before use.
- Close the front cover before running: otherwise, electric shock may occur.

1.4.3 Maintenance and component replacement

- Only well-trained and qualified professionals are allowed to perform maintenance, inspection, and component replacement on the inverter.
- Disconnect all the power sources applied to the inverter before terminal wiring, and wait for at least the time designated on the inverter after disconnecting the power sources.
- ♦ Take measures to prevent screws, cables and other conductive matters from falling into the inverter during maintenance and component replacement.

Note:

- Use proper torque to tighten the screws.
- Keep the inverter and its parts and components away from combustible materials during maintenance and component replacement.
- Do not carry out insulation voltage-endurance test on the inverter, or measure the control circuits of the inverter with megameter.
- ♦ Take proper anti-static measures on the inverter and its internal parts during maintenance and component replacement.

1.4.4 What to do after Scrapping

♦ The heavy metals inside the inverter should be treated as industrial effluent.

When the life cycle ends, the product should enter the recycling system. Dispose of it separately at an appropriate collection point instead of placing it in the normal waste stream.

2. Quick startup

2.1 What this chapter contains

This chapter introduces the basic principles required during installation commissioning. Users can realize quick installation commissioning by following these principles.

2.2 Unpack inspection

Check as follows after receiving products.

- Check whether the packing box is damaged or dampened. If yes, contact local dealers or MORGENSEN offices.
- Check the model identifier on the exterior surface of the packing box is consistent with the purchased model. If no, contact local dealers or MORGENSEN offices.
- Check whether the interior surface of packing box is improper, for example, in wet condition, or whether the enclosure of the inverter is damaged or cracked. If yes, contact local dealers or MORGENSEN offices.
- Check whether the nameplate of the inverter is consistent with the model identifier on the exterior surface of the packing box. If not, contact local dealers or MORGENSEN offices.
- Check whether the accessories (including user's manual, control keypad and extension card units) inside the packing box are complete. If not, contact local dealers or MORGENSEN offices.

2.4 Application confirmation

Check the following items before operating on the inverter.

- Verify the load mechanical type to be driven by the inverter, and check whether overload occurred to the inverter during actual application, or whether the inverter power class needs to be enlarged?
- Check whether the actual running current of load motor is less than rated inverter current.
- Check whether the control precision required by actual load is the same with the control precision provided by the inverter.
- Check whether the grid voltage is consistent with rated inverter voltage.
- Check whether the functions required need an optional extension card to be realized.

2.5 Environment confirmation

Check the following items before use.

- Check whether the ambient temperature of the inverter during actual application exceeds 40°C, if yes, derate 1% for every additional 1°C. In addition, do not use the inverter when the ambient temperature exceeds 50°C.
 - Note: For cabinet-type inverter, its ambient temperature is the air temperature inside the cabinet.
- Check whether ambient temperature of the inverter during actual application is below -10°C, if yes, install heating facility.
 - Note: For cabinet-type inverter, its ambient temperature is the air temperature inside the cabinet.
- Check whether the altitude of the application site exceeds 1000m, if yes, derate 1% for every additional 100 m.
- 4. Check whether the humidity of application site exceeds 90%, if yes, check whether condensation occurred, if condensation does exist, take additional protective measures.
- Check whether there is direct sunlight or animal intrusion in the application site, if yes, take additional protective measures.
- Check whether there is dust, explosive or combustible gases in the application site, if yes, take additional protective measures.

2.6 Installation confirmation

After the inverter is installed properly, check the installation condition of the inverter.

- Check whether the input power cable and current-carrying capacity of the motor cable fulfill actual load requirements.
- Check whether peripheral accessories (including input reactors, input filters, output reactors, output filters, DC reactors, brake units and brake resistors) of the inverter are of correct type and installed properly; check whether the installation cables fulfill requirements on current-carrying

capacity.

- Check whether the inverter is installed on fire-retardant materials; check whether the hot parts (reactors, brake resistors, etc.) are kept away from combustible materials.
- Check whether all the control cables are routed separately with power cables based on EMC requirement.
- Check whether all the grounding systems are grounded properly according to inverter requirements.
- Check whether installation spacing of the inverter complies with the requirements in operation manual.
- Check whether installation mode of the inverter complies with the requirements in operation manual. Vertical installation should be adopted whenever possible.
- 8. Check whether external connecting terminals of the inverter are firm and tight enough, and whether the moment is up to the requirement.
- Check whether there are redundant screws, cables or other conductive objects inside the inverter, if yes, take them out.

2.7 Basic commissioning

Carry out basic commissioning according to the following procedures before operating on the inverter.

- Select motor type, set motor parameters and select inverter control mode according to actual motor parameters.
- Whether autotuning is needed? If possible, disconnect the motor load to carry out dynamic parameter autotuning; if the load cannot be disconnected, perform static autotuning.
- 3. Adjust the acceleration and deceleration time based on actual working conditions of the load.
- 4. Jogging to carry out device commissioning. Check whether the motor running direction is consistent with the direction required, if no, it is recommended to change the motor running direction by exchanging the motor wiring of any two phases.
- 5. Set all the control parameters, and carry out actual operation.

3. Product overview

3.1 What this chapter contains

This chapter mainly introduces the operation principles, product features, layouts, nameplates and model instructions.

3.2 Basic principle

MSI350 series inverter is used to control asynchronous AC induction motor and permanent-magnet synchronous motor. The figure below shows the main circuit diagram of the inverter. The rectifier converts 3PH AC voltage into DC voltage, and the capacitor bank of intermediate circuit stabilizes the DC voltage. The inverter converts DC voltage into the AC voltage used by AC motor. When the circuit voltage exceeds the maximum limit value, external brake resistor will be connected to intermediate DC circuit to consume the feedback energy.

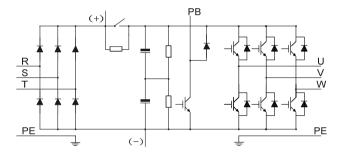


Fig 3.1 380V (15kW and below) main circuit diagram

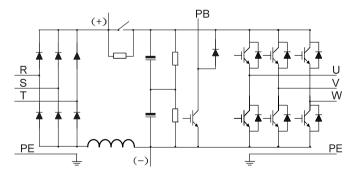


Fig 3.2 380V (18.5kW-110kW (inclusive)) main circuit diagram

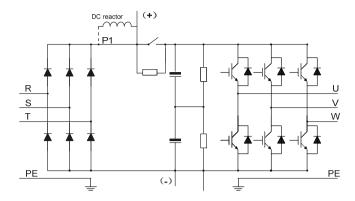


Fig 3.3 380V (132kW and above) main circuit diagram

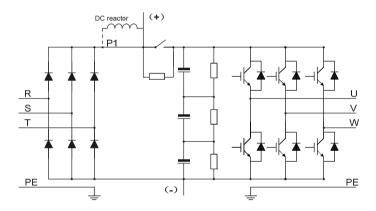


Fig 3.4 660V main circuit diagram

- 132kW and above inverters can be connected to external DC reactors. Before connection, it is required to take off the copper bar between P1 and (+). 132kW and above inverters can be connected to external brake unit. DC reactors and brake units are optional parts.
- 2. 18.5kW-110kW (inclusive) inverters are equipped with built-in DC reactor.
- 37kW and below models carry built-in brake units, 45kW-110kW (inclusive) supports built-in brake unit. The models that carry built-in brake unit can also be connected to external brake resistor. The brake resistor is optional part.
- 4. 660V inverters can be connected to external DC reactor. Before connection, it is required to take off the copper bar between P1 and (+). 660V inverters can be connected to external brake unit. DC reactors and brake units are optional parts.

3.3 Product specification

Function description		Specification	
	L	AC 3PH 380V (-15%)-440V (+10%) rated voltage: 380V	
Power input	Input voltage (V)	AC 3PH 520V (-15%)–690V (+10%) rated voltage: 660V	
	Input current (A)	Refer to Rated value	
	Input frequency (Hz)	50Hz or 60Hz, allowable range: 47–63Hz	
	Output voltage (V)	0-input voltage	
Power	Output current (A)	Refer to Rated value	
output	Output power (kW)	Refer to Rated value	
	Output frequency (Hz)	0–400Hz	
	Control mode	SVPWM control, SVC, VC	
	Motor type	Asynchronous motor, permanent-magnet synchronous motor	
	Speed regulation ratio	Asynchronous motor 1: 200 (SVC); Synchronous motor 1: 20 (SVC) , 1:1000 (VC)	
	Speed control precision	±0.2% (SVC), ±0.02% (VC)	
Technical	Speed fluctuation	± 0.3% (SVC)	
control	Torque response	<20ms SVC) , <10ms (VC)	
performance	Torque control precision	10% (SVC) , 5% (VC)	
	Starting torque	Asynchronous motor: 0.25Hz/150% (SVC)	
		Synchronous motor: 2.5 Hz/150% (SVC)	
		0Hz/200% (VC)	
	Overload capacity	150% of rated current: 1min;	
		180% of rated current: 10s;	
		200% of rated current: 1s;	
	Frequency setup mode	Digital, analog, pulse frequency, multi-step speed running, simple PLC, PID, MODBUS communication, PROFIBUS communication, etc; Realize switch-over between the set combination and the set	
		channel	
Running control	Automatic voltage regulation function	Keep the output voltage constant when grid voltage changes	
performance		Fault protection function	
	Fault protection function	Provide over 30 kinds of fault protection functions:	
	r dait protection function	overcurrent, overvoltage, undervoltage, over-temperature,	
		phase loss and overload, etc	
	Speed tracking restart	Realize impact-free starting of the motor in rotating	
	function	Note: This function is available for 4kW and above models	

Function description		Specification	
	Terminal analog input resolution	No more than 20mV	
	Terminal digital input resolution	No more than 2ms	
	Analog input	2 inputs, Al1: 0-10V/0-20mA; Al2: -10-10V	
	Analog output	1 output, AO1: 0–10V /0–20mA	
Peripheral	Digital input	Four regular inputs; max. frequency: 1kHz; internal impedance: $3.3k\Omega$ Two high-speed inputs; max. frequency: 50kHz; supports quadrature encoder input; with speed measurement function	
interface	Digital output	One high-speed pulse output; max. frequency: 50kHz One Y terminal open collector output	
	Relay output	Two programmable relay outputs RO1A NO, RO1B NC, RO1C common port RO2A NO, RO2B NC, RO2C common port Contact capacity: 3A/AC250V, 1A/DC30V	
	Extension interface	Three extension interfaces: SLOT1, SLOT2, SLOT3 Expandable PG card, programmable extension card, communication card, I/O card, etc	
	Installation mode	Support wall-mounting, floor-mounting and flange-mounting	
	Temperature of running environment	-10–50°C, derating is required if the ambient temperature exceeds 40°C	
	Protection level	IP20	
	Pollution level	Level 2	
	Cooling mode	Air cooling	
Others	Brake unit	Built-in brake unit for 380V 37kW and below models; Optional built-in brake unit for 380V 45kW–110kW (inclusive) models; Optional external brake unit for 660V models;	
	EMC filter	380V models fulfill the requirements of IEC61800-3 C3 Optional external filter should meet the requirements of IEC61800-3 C2	

3.4 Product nameplate

Fig 3.5 Product nameplate

Note:

- This is an example of the nameplate of standard MSI350 products. The CE/TUV/IP20 marking on the top right will be marked according to actual certification conditions.
- 2. Scan the QR code on the bottom right to download mobile APP and operation manual.

3.5 Type designation key

The type designation key contains product information. Users can find the type designation key on the nameplate and simple nameplate of the inverter.

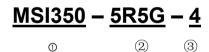


Fig 3.6 Type designation key

Field	Sign	Description	Contents
Abbreviation of product series	1	Abbreviation of product series	MSI350: MSI350 high-performance multi-function inverter
Rated power	Power range + load type		5R5-5.5kW G—Constant torque load
Voltage level	3	Voltage level 4: AC 3PH 380V (-15%)–440V (+10%) Rated voltage: 380V 6: AC 3PH 520V (-15%)–690V (+10%) Rated voltage: 660V	
Note: Built-in brake unit is included in standard configuration of 380V 37kW and below models;			

Field	Sign	Description	Contents
-------	------	-------------	----------

Brake unit is not included in standard configuration of 380V 45–110kW models (optional built-in brake unit is available, suffix "-B" indicates optional built-in brake unit, eg MSI350-045G-4-B)

3.6 Rated value

3.6.1 AC 3PH 380V(-15%)-440V(+10%) rated value

Product model	Output power (kW)	Input current (A)	Output current (A)
MSI350-1R5G-4	1.5	5.0	3.7
MSI350-2R2G-4	2.2	5.8	5
MSI350-004G-4	4	13.5	9.5
MSI350-5R5G-4	5.5	19.5	14
MSI350-7R5G-4	7.5	25	18.5
MSI350-011G-4	11	32	25
MSI350-015G-4	15	40	32
MSI350-018G-4	18.5	47	38
MSI350-022G-4	22	51	45
MSI350-030G-4	30	70	60
MSI350-037G-4	37	80	75
MSI350-045G-4	45	98	92
MSI350-055G-4	55	128	115
MSI350-075G-4	75	139	150
MSI350-090G-4	90	168	180
MSI350-110G-4	110	201	215
MSI350-132G-4	132	265	260
MSI350-160G-4	160	310	305
MSI350-185G-4	185	345	340
MSI350-200G-4	200	385	380
MSI350-220G-4	220	430	425
MSI350-250G-4	250	460	480
MSI350-280G-4	280	500	530
MSI350-315G-4	315	580	600
MSI350-355G-4	355	625	650
MSI350-400G-4	400	715	720
MSI350-450G-4	450	840	820
MSI350-500G-4	500	890	860

- The input current of 1.5–500kW inverter is measured in cases where the input voltage is 380V without additional reactors:
- 2. The rated output current is the output current when the output voltage is 380V;
- Within allowable input voltage range, the output current/power cannot exceed rated output current/power.

3.6.2 AC 3PH 520V (-15%)-690V (+10%) rated value

Product model	Output power (kW)	Input current (A)	Output current (A)
MSI350-022G-6	22	35	27
MSI350-030G-6	30	40	34
MSI350-037G-6	37	47	42
MSI350-045G-6	45	52	54
MSI350-055G-6	55	65	62
MSI350-075G-6	75	85	86
MSI350-090G-6	90	95	95
MSI350-110G-6	110	118	131
MSI350-132G-6	132	145	147
MSI350-160G-6	160	165	163
MSI350-185G-6	185	190	198
MSI350-200G-6	200	210	216
MSI350-220G-6	220	230	240
MSI350-250G-6	250	255	274
MSI350-280G-6	280	286	300
MSI350-315G-6	315	334	328
MSI350-355G-6	355	360	380
MSI350-400G-6	400	411	426
MSI350-450G-6	450	445	465
MSI350-500G-6	500	518	540
MSI350-560G-6	560	578	600
MSI350-630G-6	630	655	680

- The input current of 22–350kW inverter is measured in cases where the input voltage is 660V without DC reactors and input/output reactors;
- The input current of 400–630kW inverter is measured in cases where the input voltage is 660V and there is input reactor;
- 3. Rated output current is the output current when the output voltage is 660V.
- 4. Within allowable input voltage range, the output current/power cannot exceed rated output

current/power.

3.7 Structure diagram

The inverter layout is shown in the figure below (take a 380V 30kW inverter as an example).

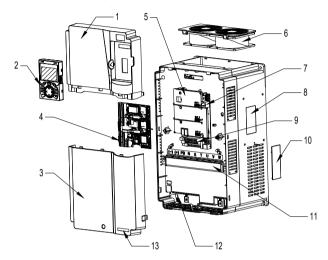
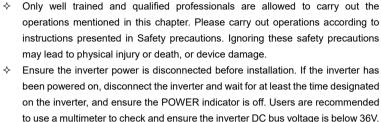


Fig 3.7 Structure diagram


No.	Name	Instruction
1	Upper cover	Protect internal components and parts
2	Keypad	See details at chapter 5.4 Keypad operation
3	Lower cover	Protect internal components and parts
4	Extension card	Optional, see details at Appendix A Extension cards
5	Baffle of control board	Protect the control board and install extension card
6	Cooling for	See details at chapter 9 Maintenance and hardware
О	Cooling fan	fault diagnosis
7	Keypad interface	Connect the keypad
8	Nameplate	See details at chapter 3.4 Product nameplate
9	Control terminals	See details at chapter 4 Installation guide
		Optional. Cover plate can upgrade protection level,
10	Cover plate of heat emission hole	however, as it will also increase internal temperature,
		derated use is required.
11	Main circuit terminal	See details at chapter 4 Installation guide
12	POWER indicator	Power indicator
13	Label of MSI350 product series	See details at Type designation key of this chapter

4. Installation guide

4.1 What this chapter contains

This chapter introduces the mechanical and electrical installations of the inverter.

Installation must be designed and done according to applicable local laws and regulations. MORGENSEN does not assume any liability whatsoever for any installation which breaches local laws and regulations. If recommendations given by MORGENSEN are not followed, the inverter may experience problems that the warranty does not cover.

4.2 Mechanical installation

4.2.1 Installation environment

Installation environment is essential for the inverter to operate at its best in the long run. The installation environment of the inverter should meet the following requirements.

Environment	Condition		
Installation site	Indoors		
Ambient temperature	 → -10-+50°C; → When the ambient temperature exceeds 40°C, derate 1% for every additional 1°C; → It is not recommended to use the inverter when the ambient temperature is above 50°C; → In order to improve reliability, do not use the inverter in cases where the temperature changes rapidly; → When the inverter is used in a closed space eg control cabinet, use cooling fan or air conditioner to prevent internal temperature from exceeding the temperature required; → When the temperature is too low, if restart an inverter which has been idled for 		

Environment	Condition
	a long time, it is required to install external heating device before use to eliminate the freeze inside the inverter, failing to do so may cause damage to the inverter.
Humidity	 ♦ The relative humidity (RH) of the air is less than 90%; ♦ Condensation is not allowed; ♦ The max RH cannot exceed 60% in the environment where there are corrosive gases.
Storage temperature	-30-+60°C
Running environment	The installation site should meet the following requirements. Away from electromagnetic radiation sources; Away from oil mist, corrosive gases and combustible gases; Ensure foreign object like metal powder, dust, oil and water will not fall into the inverter (do not install the inverter onto combustible object like wood); Away from radioactive substance and combustible objects; Away from harmful gases and liquids; Low salt content; No direct sunlight
Altitude	 ⇒ Below 1000m; ⇒ When the altitude exceeds 1000m, derate 1% for every additional 100m; ⇒ When the altitude exceeds 2000m, configure isolation transformer on the input end of the inverter. It is recommended to keep the altitude below 5000m.
Vibration	The max. amplitude of vibration should not exceed 5.8m/s² (0.6g)
Installation direction	Install the inverter vertically to ensure good heat dissipation effect

Note:

- MSI350 series inverter should be installed in a clean and well-ventilated environment based on the IP level.
- 2. The cooling air must be clean enough and free from corrosive gases and conductive dust.

4.2.2 Installation direction

The inverter can be installed on the wall or in a cabinet.

The inverter must be installed vertically. Check the installation position according to following requirements. See appendix C *Dimension drawings* for detailed outline dimensions.

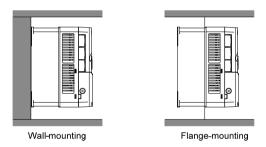


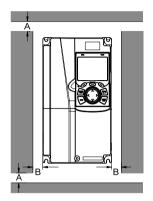
Fig 4.1 Installation direction of the inverter

4.2.3 Installation mode

There are three kinds of installation modes based on different inverter dimensions.

- Wall-mounting: suitable for 380V 315kW and below inverters, and 660V 355kW and below inverters:
- Flange-mounting: suitable for 380V 200kW and below inverters, and 660V 220kW and below inverters;
- 3. Floor-mounting: suitable for 380V 220–500kW inverters, and 660V 250–630kW inverters.




Fig 4.2 Installation mode

- (1) Mark the position of the installation hole. See appendix for the position of installation hole;
- (2) Mount the screws or bolts onto the designated position;
- (3) Put the inverter on the wall;
- (4) Tighten the fixing screws on the wall.

- Flange-mounting plate is a must for 380V 1.5–75kW inverters that adopt flange-mounting mode; while 380V 90–200kW and 660V 22–220kW models need no flange-mounting plate.
- Optional installation base is available for 380V 220–315kW and 660V 250–355kW inverters.
 The base can hold an input AC reactor (or DC reactor) and an output AC reactor.

4.2.4 Single-unit installation

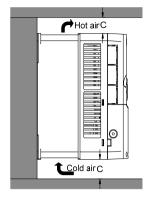
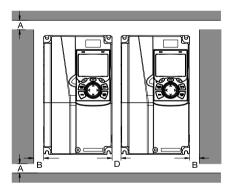



Fig 4.3 Single-unit installation

Note: The min. dimension of B and C is 100mm.

4.2.5 Multiple-unit installation

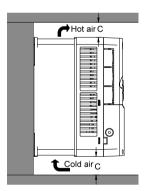


Fig 4.4 Parallel installation

- 1. When users install inverters in different sizes, align the top of each inverter before installation for the convenience of future maintenance.
- 2. The min. dimension of B, D and C is 100mm.

4.2.6 Vertical installation

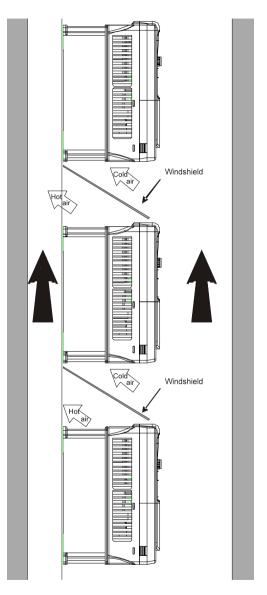


Fig 4.5 Vertical installation

Note: During vertical installation, users must install windshield, otherwise, the inverter will experience mutual interference, and the heat dissipation effect will be degraded.

4.2.7 Tilted installation

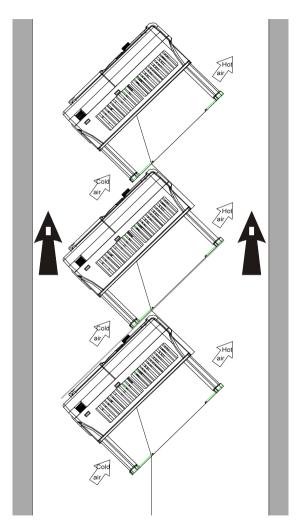


Fig 4.6 Tilted installation

Note: During tilted installation, it is a must to ensure the air inlet duct and air outlet duct are separated

from each other to avoid mutual interference.

4.3 Standard wiring of main circuit

4.3.1 Wiring diagram of main circuit

4.3.1.1 AC 3PH 380V(-15%)-440V(+10%) main circuit wiring diagram

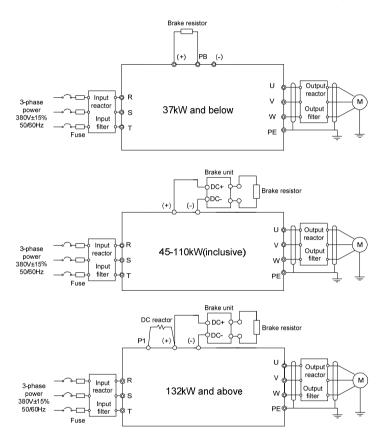


Fig 4.7 Main circuit wiring diagram for AC 3PH 380V(-15%)-440V(+10%)

Note:

- The fuse, DC reactor, brake unit, brake resistor, input reactor, input filter, output reactor and output filter are optional parts. See Appendix D Optional peripheral accessories for details.
- P1 and (+) have been short connected by default for 380V 132kW and above inverters. If users need to connect to external DC reactor, take off the short-contact tag of P1 and (+).
- When connecting the brake resistor, take off the yellow warning sign marked with PB, (+) and (-)
 on the terminal block before connecting the brake resistor wire, otherwise, poor contact may occur.
- 4. Built-in brake unit is optional for 380V 45kW-110kW models.

4.3.1.2 AC 3PH 520V(-15%)-690V(+10%) main circuit wiring diagram

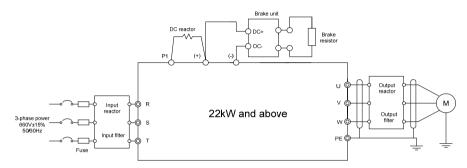


Fig 4.8 660V main circuit wiring diagram

Note:

- The fuse, DC reactor, brake resistor, input reactor, input filter, output reactor and output filter are
 optional parts. See Appendix D Optional peripheral accessories for details.
- 2. P1 and (+) have been short connected by default. If users need to connect to external DC reactor, take off the short-contact tag of P1 and (+).
- When connecting the brake resistor, take off the yellow warning sign marked with (+) and (-) on the terminal block before connecting the brake resistor wire, otherwise, poor contact may occur.

4.3.2 Main circuit terminal diagram

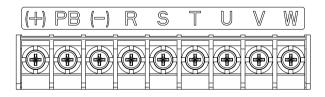


Fig 4.9 3PH 380V 22kW and below

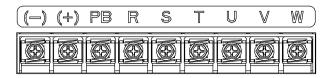


Fig 4.10 3PH 380V 30-37kW

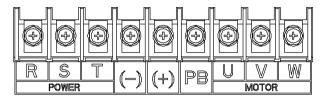


Fig 4.11 3PH 380V 45-110kW

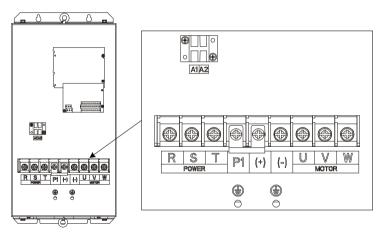


Fig 4.12 660V 22-45kW

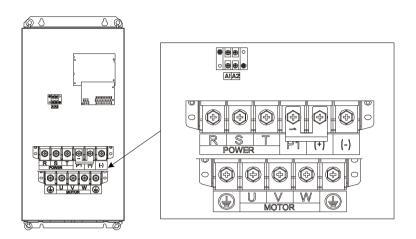


Fig 4.13 660V 55-132kW

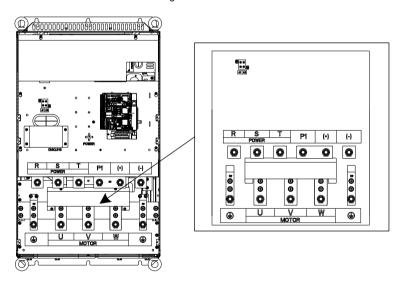


Fig 4.14 380V 132-200kW and 660V 160-220kW

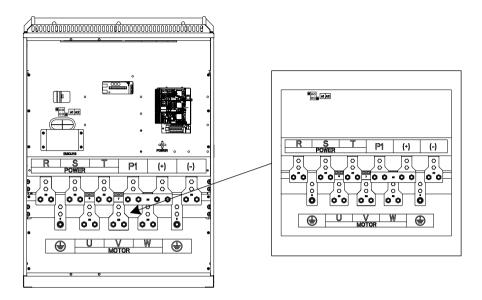


Fig 4.15 380V 220-315kW and 660V 250-355kW

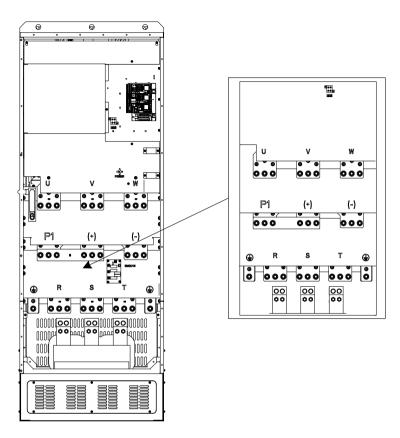


Fig 4.16 380V 355-500kW and 660V 400-630kW

		Terminal na	ame			
Terminal sign	380V 37kW and below	380V 45- 110kW (inclusive)	380V 132kW and above 660V	Function description		
R, S, T	Main circuit power input			3PH AC input terminal, connect to the grid		
U, V, W		Inverter out	3PH AC output terminal, connect to the motor			
P1	Null	Null	P1 and (+) connect to external DC			
(+)	Brake resistor terminal 1	Brake unit terminal 1	DC reactor terminal 2, Brake unit terminal 1	reactor terminal (+) and (-) connect to external		

		Terminal na	ıme	
Terminal sign	380V 37kW and below	380V 45- 110kW (inclusive)	380V 132kW and above 660V	Function description
(-)	/	Brake unit terminal 2		brake unit terminal
РВ	Brake resistor terminal 2		Null	PB and (+) connect to external brake resistor terminal
PE	Groundin	g resistor is les	ss than 10 ohm	Grounding terminal for safe protection; each machine must carry two PE terminals and proper grounding is required

Note:

- Do not use asymmetrical motor cable. If there is a symmetrical grounding conductor in the motor cable besides the conductive shielded layer, ground the grounding conductor on the inverter end and motor end.
- 2. Brake resistor, brake unit and DC reactor are optional parts.
- 3. Route the motor cable, input power cable and control cables separately.
- 4. "Null" means this terminal is not for external connection.

4.3.3 Wiring process of the main circuit terminals

- Connect the grounding line of the input power cable to the grounding terminal (PE) of the inverter, and connect the 3PH input cable to R, S and T terminals and tighten up.
- Connect the grounding line of the motor cable to the grounding terminal of the inverter, and connect 3PH motor cable to U, V and W terminals and tighten up.
- 3. Connect the brake resistor which carries cables to the designated position.
- 4. Fix all the cables outside the inverter mechanically if allowed.

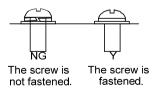


Fig 4.17 Screw installation diagram

4.4 Standard wiring of control circuit

4.4.1 Wiring diagram of basic control circuit

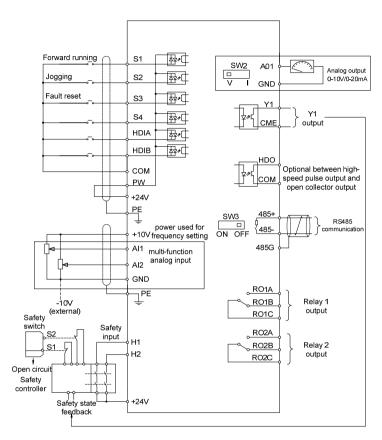


Fig 4.18 Wiring diagram of control circuit

Terminal name	Instruction
+10V	The inverter provides +10.5V power
AI1	1. Input range: Al1 voltage/current can choose 0–10/ 0–20mA;
	Al2: -10V-+10V voltage;
Al2	2. Input impedance: 20kΩ during voltage input; 250Ω during current input;
	3. Al1 voltage or current input is set by P05.50;

Terminal name	Instruction					
	4. Resolution ratio: When 10V corresponds to 50Hz, the min. resolution ratio is 5mV;					
	5. 25°C, When input above 5V or 10mA, the error is ±0.5%					
GND	+10.5V reference zero potential					
	1. Output range: 0–10V voltage or 0–20mA current					
AO1	Voltage or current output is set by toggle switch SW2;					
	3. 25°C, when input above 5V or 10mA, the error is ±0.5%.					
RO1A						
RO1B	RO1 relay output; RO1A is NO, RO1B is NC, RO1C is common port					
RO1C	Contact capacity: 3A/AC250V, 1A/DC30V					
RO2A						
RO2B	RO2 relay output; RO2A is NO, RO2B is NC, RO2C is common port					
RO2C	Contact capacity: 3A/AC250V, 1A/DC30V					
	1. Switch capacity: 200mA/30V;					
HDO	2. Range of output frequency: 0–50kHz					
	3. Duty ratio: 50%					
COM	Common port of +24V					
CME	Common port of open collector output; short connected to COM by default					
\/A	1. Switch capacity: 200mA/30V;					
Y1	2. Range of output frequency: 0–1kHz					
485+	485 communication port, 485 differential signal port and standard 485 communication					
485-	interface should use twisted shielded pair; the 120ohm terminal matching resistor of 485					
400-	communication is connected by toggle switch SW3.					
PE	Grounding terminal					
PW	Provide input digital working power from external to internal;					
F VV	Voltage range: 12–24V					
24V	The inverter provides user power; the maximum output current is 200mA					
COM	Common port of +24V					
S1	Digital input 1 1. Internal impedance: 3.3kΩ					
S2	Digital input 2 2. Accept 12–30V voltage input					
S3	Digital input 3 3. This terminal is bi-directional input terminal and supports					
	NPN/PNP connection modes					
S4	4. Max. input frequency: 1kHz Digital input 4					
34	5. All are programmable digital input terminals, users can set the					
	terminal function via function codes					
HDIA	Besides S1–S4 functions, it can also act as high frequency pulse input channel					
HDIB	Max. input frequency: 50kHz;					
	Duty ratio: 30%–70%;					

Terminal name	Instruction			
	Supports quadr	Supports quadrature encoder input; equipped with speed-measurement function		
+24V—H1	STO input 1	1. Safe torque off (STO) redundant input, connect to external NC		
+24V—H2	STO input 2	contact, STO acts when the contact opens, and the inverter stops output; 2. Safety input signal wires use shielded wire whose length is within 25m; 3. H1 and H2 terminals are short connected to +24V by default; it is required to remove the short-contact tag on the terminal before using STO function.		

4.4.2 Input/output signal connection diagram

Set NPN /PNP mode and internal/external power via U-type short-contact tag. NPN internal mode is adopted by default.

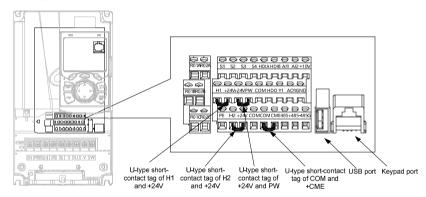


Fig 4.19 Position of U-type short-contact tag

Note: As shown in Fig 4.19, the USB port can be used to upgrade the software, and the keypad port can be used to connect an external keypad. The external keypad cannot be used when the keypad of the inverter is used.

If input signal comes from NPN transistors, set the U-type short-contact tag between +24V and PW based on the power used according to the figure below.

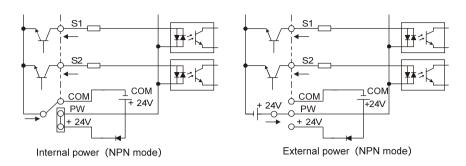


Fig 4.20 NPN mode

If input signal comes from PNP transistor, set the U-type short-contact tag based on the power used according to the figure below.

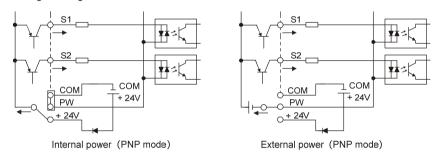


Fig 4.21 PNP mode

4.5 Wiring protection

4.5.1 Protect the inverter and input power cable in short-circuit

Protect the inverter and input power cable during short-circuit to avoid thermal overload.

Carry out protective measures according to the following requirements.

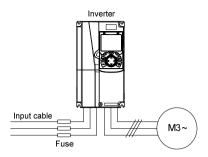


Fig 4.22 Fuse configuration

Note: Select the fuse according to operation manual. During short-circuit, the fuse will protect input power cables to avoid damage to the inverter; when internal short-circuit occurred to the inverter, it can protect neighboring equipment from being damaged.

4.5.2 Protect the motor and motor cable in short circuit

If the motor cable is selected based on rated inverter current, the inverter will be able to protect the motor cable and motor during short circuit without other protective devices.

If the inverter is connected to multiple motors, it is a must to use a separated thermal overload switch or breaker to protect the cable and motor, which may require the fuse to cut off the short circuit current.

4.5.3 Protect motor and prevent thermal overload

According to the requirements, the motor must be protected to prevent thermal overload. Once overload is detected, users must cut off the current. The inverter is equipped with motor thermal overload protection function, which will block output and cut off the current (if necessary) to protect the motor.

4.5.4 Bypass connection

In some critical occasions, industrial frequency conversion circuit is necessary to ensure proper operation of the system when inverter fault occurs.

In some special cases, eg, only soft startup is needed, it will converts to power-frequency operation directly after soft startup, corresponding bypass link is also needed.

Do not connect any power source to inverter output terminals U, V and W. The voltage applied to motor cable may cause permanent damage to the inverter.

If frequent switch-over is needed, users can use the switch which carries mechanical interlock or a contactor to ensure motor terminals will not be connected to input power cables and inverter output ends simultaneously.

5. Basic operation instructions

5.1 What this chapter contains

This chapter tells users how to use the inverter keypad and the commissioning procedures for common functions of the inverter.

5.2 Keypad introduction

LCD keypad is included in the standard configuration of MSI350 series inverter. Users can control the inverter start/stop, read state data and set parameters via keypad.

Fig 5.1 Keypad diagram

Note:

- LCD keypad is armed with real-time clock, which can run properly after power off when installed with batteries. The clock battery (type: CR2032) should be purchased by the user separately;
- 2. LCD keypad support parameter-copy;

3. When extending the keypad cable to install the keypad, M3 screws can be used to fix the keypad onto the door plate, or optional keypad installation bracket can be used. If you need install the keypad on another position rather than on the inverter, use a keypad extension cable with a standard RJ45 crystal head.

4. No.	Name		crystal head.		struction	
4. 140.	Name			In		
	State Indicator	(1)	F	RUN	Running indicator; LED off – the inverter is stopped; LED blinking – the inverter is in parameter autotune LED on – the inverter is running	
1		2)	TRIP		Fault indicator; LED on – in fault state LED off – in normal state LED blinking – in pre-alarm state	
		(3)	QUIC	CK/JOG	Short-cut key indicator, which display different state under different functions, se definition of QUICK/JOG key for details	
		(4)	0		The function of function key varies with the	
		(5)		Function key	menu; The function of function key is displayed in the footer	
		(6)				
2	Button area	(7)	QUICK	Short-cut key	Re-definable. It is defined as JOG function by default, namely jogging. The function of short-cut key can be set by the ones of P07.12, as shown below. 0: No function; 1: Jogging (linkage indicator (3); logic: NO); 2: Reserved; 3: FWD/REV switch-over (linkage indicator (3); logic: NC); 4: Clear UP/DOWN setting (linkage indicator (3) logic: NC); 5: Coast to stop (linkage indicator (3); logic: NC); 6: Switching running command reference mode in order (linkage indicator (3); logic: NC); 7: Reserved; Note: After restoring to default values,	

4. No.	Name			In	struction
					the default function of short-cut key (7) is 1.
		(8)	Enter	Confirmation key	The function of confirmation key varies with menus, eg confirming parameter setup, confirming parameter selection, entering the next menu, etc.
		(9)	RUN 🔷	Running key	Under keypad operation mode, the running key is used for running operation or autotuning operation.
		(10)	STOP RST	Stop/ Reset key	During running state, press the Stop/Reset key can stop running or autotuning; this key is limited by P07.04. During fault alarm state, all the control modes can be reset by this key.
		(11)	*	Direction key UP: DOWN: LEFT: RIGHT:	UP: The function of UP key varies with interfaces, eg shifting up the displayed item, shifting up the selected item, changing digits, etc; DOWN: The function of DOWN key varies with interfaces, eg shifting down the displayed item, shifting down the selected item, changing digits, etc; LEFT: The function of LEFT key varies with interfaces, eg switch over the monitoring interface, eg shifting the cursor leftward, exiting current menu and returning to previous menu, etc; RIGHT: The function of RIGHT key varies with interfaces, eg switch over the monitoring interface, shifting the cursor rightward, enter the next menu etc.
3	Display area	(12)	LCD	Display screen	240×160 dot-matrix LCD; display three monitoring parameters or six sub-menu items simultaneously
		(13)	RJ45 interface	RJ45 interface	RJ45 interface is used to connect to the inverter.
4	Others	(14)	Battery cover	Clock battery cover	Remove this cover when replacing or installing clock battery, and close the cover after battery is installed

4.	No.	Name		Instruction				
			(15)	USB	mini USB	Mini USB terminal is used to connect to the		
				terminal	terminal	USB flash drive through an adapter.		

The LCD has different display areas, which displays different contents under different interfaces. The figure below is the main interface of stop state.

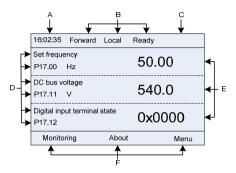


Fig 5.2 Main interface of LCD

Area	Name	Displayed contents
11IA	Deal time display and	Display the real-time; clock battery is not included; the time needs
Header A	Real-time display area	to be reset when powering on the inverter
		Display the running state of the inverter:
		1. Display motor rotating direction: "Forward" – Run forward
		during operation; Reverse - Run reversely during operation;
		"Forbid" – Reverse running is forbidden;
	Invertor rupping state	2. Display inverter running command channel: "Local" -
Header B	Inverter running state	Keypad; "Terminal" – Terminal; "Remote" - Communication
	display area	3. Display current running state of the inverter : "Ready" -
		The inverter is in stop state (no fault); "Run" – The inverter is in
		running state; "Jog" – The inverter is in jogging state; "Pre-alarm"
		- the inverter is under pre-alarm state during running; "Fault" -
		Inverter fault occurred.
	Inverter station no.	1. Display inverter station no.: 01-99, applied in multi-drive
Header C		applications (reserved function);
neader C	and model display area	2. Inverter model display: "MSI350" - current inverter is
	alea	MSI350 series inverter
	The parameter name	Display the parameter name and corresponding function code
Display D	and function code	monitored by the inverter; three monitoring parameters can be
Display D	monitored by the	displayed simultaneously. The monitoring parameter list can be
	inverter	edited by the user
Dieploy E	Parameter value	Display the parameter value monitoring by the inverter, the
Display E	monitored by the	monitoring value will be refreshed in real time

Area	Name	Displayed contents
	inverter	
Footer F	Corresponding menu of function key (4), (5) and (6)	Corresponding menu of function key (4), (5) and (6). The corresponding menu of function key (4), (5) and (6) varies with interfaces, and the contents displayed in this area is also different

5.3 Keypad display

The display state of MSI350 series keypad is divided into stop parameter display state, running parameter display stateand fault alarm display state.

5.4 Stop parameter display state

When the inverter is in stop state, the keypad displays stop state parameters, and this interface is the main interface during power-up by default. Under stop state, parameters in various states can be displayed. Press or to shift the displayed parameter up or down.

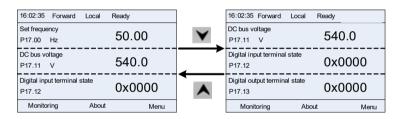


Fig 5.3 Stop parameter display state

Press or to switch between different display styles, including list display style and progress bar display style.

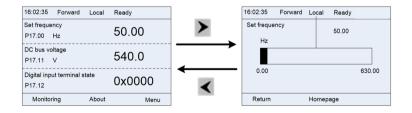


Fig 5.4 Stop parameter display state

The stop display parameter list is defined by the user, and each state variable function code can be added to the stop display parameter list as needed. The state variable which has been added to the

stop display parameter list can also be deleted or shifted.

5.5 Running parameter display state

After receiving valid running command, the inverter will enter running state, and the keypad displays running state parameter with RUN indicator on the keypad turning on. Under running state, multiple kinds of state parameters can be displayed. Press or to shift up or down.

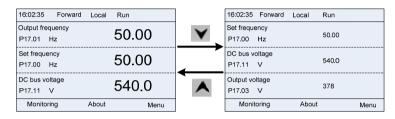


Fig 5.5 Running parameter display state

Press or to switch between different display styles, including list display style and progress bar display style.

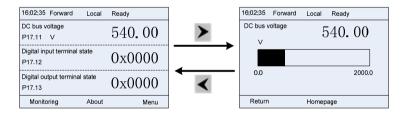


Fig 5.6 Running parameter display state

Under running state, multiple kinds of state parameters can be displayed. The running display parameter list is defined by the user, and each state variable function code can be added to the running display parameter list as needed. The state variable which has been added to the running display parameter list can also be deleted or shifted.

5.6 Fault alarm display state

The inverter enters fault alarm display state once fault signal is detected, and the keypad displays fault code and fault information with TRIP indicator on the keypad turning on. Fault reset operation can be carried out via STOP/RST key, control terminal or communication command.

The fault code will be kept displaying until fault is removed.

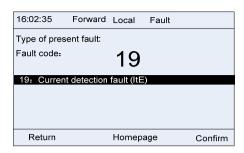


Fig 5.7 Fault alarm display state

5.7 Keypad operation

Various operations can be performed on the inverter, including entering/exiting menu, parameter selection, list modification and parameter addition.

5.7.1 Enter/exit menu

Regarding the monitoring menu, the operation relation between enter and exit is shown below.

Fig 5.8 Enter/exit menu diagram 1

Regarding the system menu, the operation relation between enter and exit is shown below.

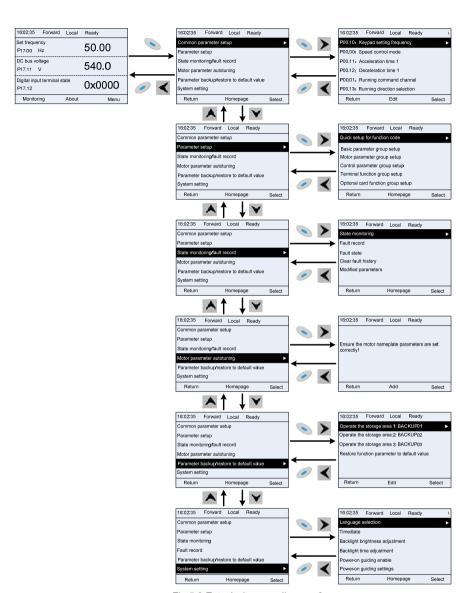


Fig 5.9 Enter/exit menu diagram 2

The keypad menu setup is shown as below.

First-level	Second-level	Third-level	Fourth-level
Common	1	1	P00.10: Set frequency via keypad

e er setup
er setup

First-level	Second-level	Third-level	Fourth-level			
		P15: Communication				
		extension card 1 function	P15.xx			
		group				
		P16: Communication				
		extension card 2 function	P16.xx			
	Optional card	group				
	function group	P25: Extension I/O card input	DOS			
	setup	function group	P25.xx			
		P26: Extension I/O card	D00			
		output function group	P26.xx			
		P27: PLC function group	P27.xx			
		P28: Master/slave function	D20 vv			
		group	P28.xx P90.xx P91.xx P92.xx			
		P90: Customized function	DOO yes			
		group 1	P90.XX			
	Default	P91: Customized function	D01 vv			
	function group	group 2	F91.XX			
	setup	P92: Customized function	D02 vv			
		group 3	F 92.AA			
		P93: Customized function	P93.xx			
		group 4	1 30.88			
		P07: HMI group	P07.xx			
		P17: State-check function	P17.xx			
	State	group	1 17.500			
	monitoring	P18: Closed-loop vector state	P18.xx			
		check function group	1 10.00			
		P19: Extension card state	P19 xx			
		check function group	P19.xx			
State			P07.27: Type of present fault			
monitoring/fault			P07.28: Type of the last fault			
record			P07.29: Type of the last but one			
			fault			
	Fault record	1	P07.30: Type of the last but two			
			fault			
			P07.31: Type of the last but three			
			fault			
			P07.32: Type of the last but four			
			fault			

First-level	Second-level	Third-level	Fourth-level			
			P07.33: Running frequency of present fault			
	Fault state		P07.34: Ramps frequency of			
	Fault State	/	present fault			
			P07.33: Running frequency of present fault P07.34: Ramps frequency of present fault P07.34: Ramps frequency of present fault P07.xx: xx state of the last but xx ault P17.xx: xx state of the last but xx ault P17.xx: xx has modified parameter 1 P17.xx.xx has modified parameter 2 P17.xx.xx has modified parameter xx P17.xx: xx has modified parame			
			fault			
	Clear fault history	1	Ensure to clear fault history?			
	Modified		Pxx.xx has modified parameter 1			
	parameter	/	Pxx.xx has modified parameter 2			
	'		Pxx.xx has modified parameter xx			
			1 ' '			
Motor	,					
parameter autotuning	/	/				
autoturning			-			
			· · · · · · · · · · · · · · · · · · ·			
			•			
			function parameter			
		Operate the storage area 1: BACKUP01 Download key function p				
		BACKUPUT	which are not in motor group			
Parameter			Download keypad function			
backup/restore	/		parameters which are in motor			
default value			group			
		Operate the storage area 2: BACKUP012				
		Operate the storage area 3: BACKUP03				
		Restore function parameter	Ensure to restore function			
		to default value	parameters to default value?			
			Language selection			
			Time/date			
System setup			Backlight brightness regulation			
	1	1	Backlight time adjustment			
			Power-on guiding enable			
			Power-on guiding settings			
			Keyboard burning selection			

First-level	Second-level	Third-level	Fourth-level
			Fault time enable
			Control board burning selection

5.7.2 List edit

The monitoring items displayed in the parameter list of stop state can be added by users as needed (through the menu of the function code in state check group), and the list can also be edited by users eg "shift up", "shift down" and "delete from the list". The edit function is shown in the interface below.

Fig 5.10 List edit diagram 1

key to confirm the edit operation and return to the previous menu (parameter list), the returned

Press key to enter edit interface, select the operation needed, and press key, key, key

list is the list edited. If key or key is pressed in edit interface wihouth selecting

edit operation, it will return to the previous menu (parameter list remain unchanged).

Note: For the parameter objects in the list header, shift-up operation will be invalid, and the same principle can be applied to the parameter objects in the list footer; after deleting a certain parameter, the parameter objects under it will be shifted up automatically.

The monitoring items displayed in the parameter list of running state can be added by users as needed (through the menu of the function code in state check group), and the list can also be edited by users eq "shift up", "shift down" and "delete from the list". The edit function is shown in the interface below.

Fig 5.11 List edit diagram 2

The parameter list of common parameter setup can be added, deleted or adjusted by users as needed,

including delete, shift-up and shift-down; the addition function can be set in a certain function code of a function group. The edit function is shown in the figure below.

Fig 5.12 List edit diagram 3

5.7.3 Add parameters to the parameter list displayed in stop/running state

In the fourth-level menu of "State monitoring", the parameters in the list can be added to the "parameter displayed in stop state" list or "parameter displayed in running state" list as shown below.

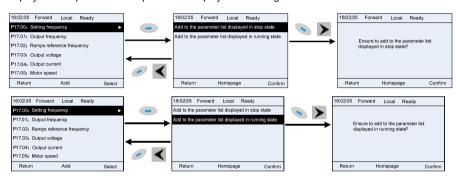


Fig 5.13 Add parameter diagram 1

Press key to enter parameter addition interface, select the operation needed, and press

the "parameter displayed in stop state" list or "parameter displayed in running state" list, the parameter added will be at the end of the list; if the parameter is already in the "parameter displayed in stop state" list or "parameter displayed in running state" list, the addition operation will be invalid. If

key or key is pressed without selecting addition peration in "Addition" interface, it will return to monitoring parameter list menu.

Part of the monitoring parameters in P07 HMI group can be added to the "parameter displayed in stop

state" list or "parameter displayed in running state" list; All the parameters in P17, P18 and P19 group can be added to the "parameter displayed in stop state" list or "parameter displayed in running state" list.

Up to 16 monitoring parameters can be added to the "parameter displayed in stop state" list; and up to 32 monitoring parameters can be added to the "parameter displayed in running state" list.

5.7.4 Add parameter to common parameter setup list

In fourth-level menu of "parameter setup" menu, the parameter in the list can be added to the "common parameter setup" list as shown below.

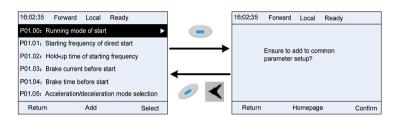
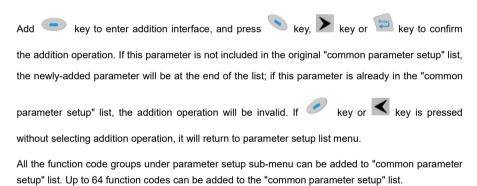



Fig 5.14 Add parameter diagram 2

5.7.5 Parameter selection edit interface

In the fourth-level menu of "parameter setup" menu, press key, key or key to enter parameter selection edit interface. After entering edit interface, current value will be highlighted. Press key and key to edit current parameter value, and the corresponding parameter item of

current value will be highlighted automatically. After parameter selection is done, press

kev or

key to save the selected parameter and return to the previous menu. In parameter selection edit

interface, press

key to maintain the parameter value and return to the previous menu.

Fig 5.15 Parameter selection edit interface

In parameter selection edit interface, the "authority" on the top right indicates whether this parameter is editable or not.

" \checkmark " indicates the set value of this parameter can be modified under current state.

"x" indicates the set value of this parameter cannot be modified under current state.

"Current value" indicates the value of current option.

"Default value" indicates the default value of this parameter.

5.7.6 Parameter setup edit interface

In the fourth-level menu in "parameter setup" menu, press key, key or key to enter parameter setup edit interface. After entering edit interface, set the parameter from low bit to high bit, and the bit under setting will be highlighted. Press key or key to increase or decrease the parameter value (this operation is valid until the parameter value exceeds the max. value or min.

value); press or to shift the edit bit. After parameters are set, press key or key or

to save the set parameters and return to the previous parameter. In parameter setup edit interface,

press 🔪 to maintain the original parameter value and return to the previous menu.

Fig 5.16 Parameter setup edit interface

In parameter selection edit interface, the "authority" on the top right indicates whether this parameter can be modified or not.

" \rangle " indicates the set value of this parameter can be modified under current state.

"x" indicates the set value of this parameter cannot be modified under current state.

"Current value" indicates the value saved last time.

"Default value" indicates the default value of this parameter.

5.7.7 State monitoring interface

In the fourth-level menu of "state monitoring/fault record" menu, press

key to enter state monitoring interface. After entering state monitoring interface, the current parameter value will be displayed in real time, this value is the actually detected value which cannot be modified.

In state monitoring interface, press

key to return to the previous menu.

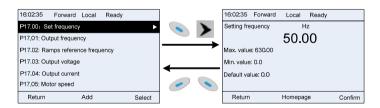


Fig 5.17 State monitoring interface

5.7.8 Motor parameter autotuning

In "Motor parameter autotuning" menu, press

key, key or key to enter motor

parameter autotuning selection interface, however, before entering motor parameter autotuning

interface, users must set the motor nameplate parameters correctly. After entering the interface, select motor autotuning type to carry out motor parameter autotuning. In motor parameter autotuning

Fig 5.18 Parameter autotuning operation diagram

After selecting motor autotuning type, enter motor parameter autotuning interface, and press RUN key to start motor parameter autotuning. After autotuning is done, a prompt will pop out indicating autotuning is succeeded, and then it will return to the main interface of stop. During autotuning, users can press STOP/RST key to terminate autotuning; if any fault occur during autotuning, the keypad will pop out a fault interface.

Fig 5.19 Parameter autotuning finished

5.7.9 Parameter backup

In "parameter backup" menu, press key, key or key to enter function parameter

backup setting interface and function parameter restoration setup interface to upload/download inverter parameters, or restore inverter parameters to default value. The keypad has three different storage areas for parameter backup, and each storage area can save the parameters of one inverter, namely it can save parameters of three inverter in total.

Fig 5.20 Parameter backup operation diagram

5.7.10 System setup

In "System setup" menu, press key, key or key to enter system setup interface to

set keypad language, time/date, backlight brightness, backlight time and restore parameters.

Note: Clock battery is not included, and the keypad time/date needs to be reset after power off. If time-keeping after power off is needed, users should purchase the clock batteries separately.

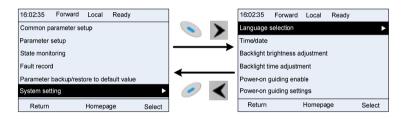


Fig 5.21 System setup diagram

5.7.11 Power-on guiding settings

The keyboard supports the power-on guiding function, mainly for the first power-on situation, guiding the user to enter the setting menu, and gradually implementing basic functions such as basic parameter setting, direction judgment, mode setting and autotuning. The power-on guiding enable menu guides the user to enable power-on to boot each time. Power-on guiding setup menu guides the user to set step by step according to the functions.

The power-on guide is shown as below.

First-level		Secor	nd-level	Thir	ird-level Fourth-		el
	0.	Power-	0:	Whether to		Whether to test	
Language Simplified Chinese	on	Powe-	enter the	0.Voo	the motor	Yes	
	guiding	on	power-on	0:Yes	rotation	res	
	enable	each	guiding		direction?		

First-level	Second-level	Thir	rd-level	Fourth-lev	el
	time	settings?			
1: English	1: Power on only once		1:No		No
	•		0: Set via keypad	Press the JOG button first. It is	Yes
			1: Set via AI1	currently forward, Is it consistent with the expectations?	No
			2: Set via Al2	P02.00 Type of	0: Asynch ronous motor
		P00.06 A frequency	3: Set via Al3	motor 1	1: Synchr onous motor
		command selection A frequency command	4: Set via high- speed pulse HDIA	P02.01 Rated power of asynchronous motor 1	
		selection	5: Set via simple PLC program	P02.02 Rated frequency of asynchronous motor 1	
			6: Set via multi- step speed running	P02.03 Rated speed of asynchronous motor 1	
			7: Set via PID control	P02.04 Rated voltage of asynchronous motor 1	
			8: Set via MODBUS	P02.05 Rated current of	

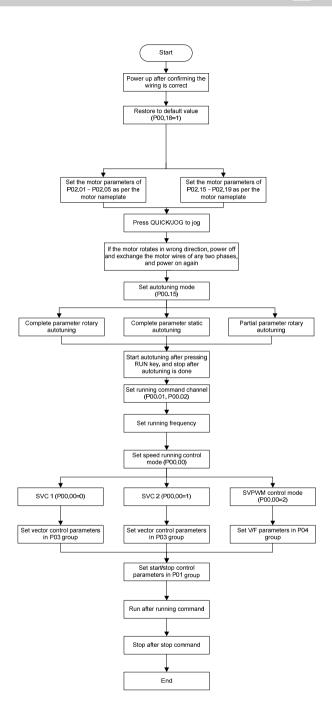
First-level	Second-level	Thir	rd-level	Fourth-lev	el
			communication	asynchronous motor 1	
			9: Set via PROFIBUS/CA Nopen/Device NET communication	P02.15 Rated power of synchronous motor 1	
			10: Set via Ethernet communication	P02.16 Rated frequency of synchronous motor 1	
			11: Set via high-speed pulse HDIB	P02.17 Number of pole pairs of synchronous motor 1	
			12: Set via pulse string AB	P02.18 Rated voltage of synchronous motor 1	
			13: Set via EtherCat/Profin etcommunicati on	P02.19 Rated current of synchronous motor 1	
			14: Set via PLC card	Whether to conduct	Yes
			15: Reserved	autotuning?	No
		P00.01 Running	0: Keypad	Motor parameter autotuning interface	
		command	1: Terminal		
		channel	2: Communication		
		P00.02	0: MODBUS		
		Communica tion running command	1: PROFIBUS/ CANopen/Devi cenet		
		channel	2: Ethernet		

First-level	Second-level	Thir	d-level	Fourth-lev	el
		Communica	3:		
		tion running	EtherCat/Profin		
		command	et		
		channel	4: PLC		
			programmable		
			card		
			5: Bluetooth		
			card		
		P08.37	0: Disable		
		Enable/disa	energy-		
		ble energy-	consumption		
		consumptio	1: Enable		
		n brake	energy-		
			consumption		
		P00.00	0: SVC 0		
		Speed	1: SVC 1		
		control	2: VF control		
		mode	3: VC		
			0: Decelerate		
		P01.08	to stop		
		Stop mode	1: Coast to		
			stop		
		P00.11			
		Acceleration			
		time			
		P00.12			
		Deceleratio			
		n time			

5.8 Basic operation instruction

5.8.1 What this section contains

This section introduces the function modules inside the inverter


- ♦ Ensure all the terminals are fixed and tightened firmly.
- Ensure the motor matches with the inverter power.

5.8.2 Common commissioning procedures

The common operation procedures are shown below (take motor 1 as an example).

Note: If fault occurred, rule out the fault cause according to "fault tracking".

The running command channel can be set by terminal commands besides P00.01 and P00.02.

Current running command channel	Multi-function terminal function (36) Command switches to keypad	Multi-function terminal function (37) Command switches to terminal	Multi-function terminal function (38) Command switches to communication
Keypad	1	Terminal	Communication
Terminal	Keypad	1	Communication
Communication	Keypad	Terminal	/

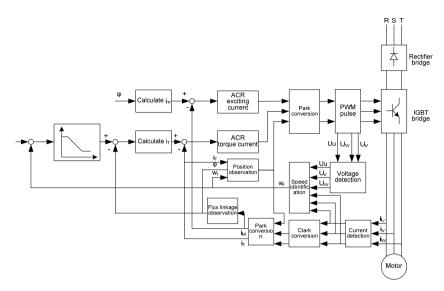
Note: "/" means this multi-function terminal is valid under current reference channel.

Related parameter list:

Function code	Name	Detailed parameter description	Default value	
		0:SVC 0		
		1:SVC 1		
D00.00		2:SVPWM	0	
P00.00	Speed control mode	3:VC	2	
		Note: If 0, 1 or 3 is selected, it is required to		
		carry out motor parameter autotuning first.		
	Dunning command	0: Keypad		
P00.01	Running command	1: Terminal	0	
	channel	2: Communication		
		0:MODBUS		
		1:PROFIBUS/CANopen/Devicenet		
P00 02	Communication running command channel	2:Ethernet	0	
P00.02		3:EtherCat/Profinet	0	
		4:PLC programmable card		
		5:Bluetooth card		
		0: No operation		
		1: Rotary autotuning; carry out comprehensive		
		motor parameter autotuning; rotary autotuning		
	Motor parameter	is used in cases where high control precision		
P00.15	•	is required;	0	
	autotuning	2: Static autotuning 1 (comprehensive		
		autotuning); static autotuning 1 is used in		
		cases where the motor cannot be		
		disconnected from load;		

Function code	Name	Detailed parameter description	Default value
		3: Static autotuning 2 (partial autotuning) ;	
		when current motor is motor 1, only P02.06,	
		P02.07 and P02.08 will be autotuned; when	
		current motor is motor 2, only P12.06, P12.07	
		and P12.08 will be autotuned.	
		0: No operation	
		1: Restore to default value	
		2: Clear fault history	
D00.40	Function parameter	Note: After the selected function operations	0
P00.18	restoration	are done, this function code will be	0
		restored to 0 automatically. Restoration to	
		default value will clear the user password,	
		this function should be used with caution.	
P02.00	Type of motor 1	0: Asynchronous motor	0
FU2.00	Type of motor 1	1: Synchronous motor	U
D00.04	Rated power of	0.4. 2000 000	Depend
P02.01	asynchronous motor 1	0.1–3000.0kW	on model
P02.02	Rated frequency of	0.01Hz P00.03 (Max. output fraguancy)	50 00H-
FU2.U2	asynchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.03	Rated speed of	1–36000rpm	Depend
F02.03	asynchronous motor 1		on model
P02.04	Rated voltage of	0–1200V	Depend
P02.04	asynchronous motor 1		on model
P02.05	Rated current of	0.8–6000.0A	Depend
P02.05	asynchronous motor 1	0.6-6000.0A	on model
P02.15	Rated power of	0.1–3000.0kW	Depend
P02.15	synchronous motor 1	0.1–3000.0kvv	on model
D00.46	Rated frequency of	0.041 I= D00.03 (May autout fragues au)	E0 0011-
P02.16	synchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.17	Number of pole pairs of	1–50	2
P02.17	synchronous motor 1	1–30	2
D00.40	Rated voltage of	0.1200\/	Depend
P02.18	synchronous motor 1	0–1200V	on model
D00.40	Rated current of	0.0.000.04	Depend
P02.19	synchronous motor 1	0.8–6000.0A	on model
P05.01-	Function of multi-function	36: Command switches to keypad	,
P05.06	digital input terminal (S1-	37: Command switches to terminal	/

Function code	Name	Detailed parameter description	Default value
	S4, HDIA, HDIB)	38: Command switches to communication	
P07.01	Reserved variables	1	1
	QUICK/JOG key function	Range: 0x00–0x27 Ones: QUICK/JOG key function selection 0: No function 1: Jogging 2: Reserved 3: Switching between forward/reverse rotation 4: Clear UP/DOWN setting 5: Coast to stop 6: Switch running command reference mode by sequence 7: Reserved Tens: Reserved	0x01


5.8.3 Vector control

Asynchronous motors are featured with high order, non-linear, strong coupling and multi-variables, which makes it very difficult to control asynchronous motors during actual application. The vector control theory aims to solve this problem through measuring and controlling the stator current vector of asynchronous motor, and decomposing the stator current vector into exciting current (current component which generates internal magnet field) and torque current (current component which generates torque) based on field orientation principle, and then controlling the amplitude value and phase position of these two components (namely, control the stator current vector of motor) to realize decoupling control of exciting current and torque current, thus achieving high-performance speed regulation of asynchronous motor.

MSI350 series inverter carries built-in speed sensor-less vector control algorithm, which can be used to drive the asynchronous motor and permanent-magnet synchronous motor simultaneously. As the core algorithm of vector control is based on accurate motor parameter model, the accuracy of motor parameters will impact the control performance of vector control. It is recommended to input accurate motor parameters and carry out motor parameter autotuning before vector operation.

As vector control algorithm is complicated, users should be cautious of regulation on dedicated function parameters of vector control.

Function code	Name	Detailed parameter description	Default value
		0:SVC 0	
		1:SVC 1	
		2:SVPWM	
P00.00	Speed control mode	3:VC	2
		Note: If 0, 1 or 3 is selected, it is required	
		to carry out motor parameter autotuning	
		first.	
	Motor parameter autotuning	0: No operation	
		1: Rotary autotuning; carry out	
		comprehensive motor parameter autotuning;	
		rotary autotuning is used in cases where	
		high control precision is required;	
		2: Static autotuning 1 (comprehensive	
P00.15		autotuning); static autotuning 1 is used in	0
		cases where the motor cannot be	
		disconnected from load;	
		3: Static autotuning 2 (partial autotuning) ;	
		when current motor is motor 1, only P02.06,	
		P02.07 and P02.08 will be autotuned; when	
		current motor is motor 2, only P12.06,	

Function code	Name	Detailed parameter description	Default value
		P12.07 and P12.08 will be autotuned.	
D00.00	T	0: Asynchronous motor	0
P02.00	Type of motor 1	1: Synchronous motor	0
P03.00	Speed loop proportional gain 1	0–200.0	20.0
P03.01	Speed loop integral time 1	0.000-10.000s	0.200s
P03.02	Switching low point frequency	0.00Hz-P03.05	5.00Hz
P03.03	Speed loop proportional gain 2	0–200.0	20.0
P03.04	Speed loop integral time 2	0.000-10.000s	0.200s
P03.05	Switching high point frequency	P03.02–P00.03 (Max. output frequency)	10.00Hz
P03.06	Speed loop output filter	0-8 (corresponds to 0-28/10ms)	0
P03.07	Electromotion slip compensation coefficient of vector control	50%–200%	100%
P03.08	Brake slip compensation coefficient of vector control	50%–200%	100%
P03.09	Current loop proportional coefficient P	0–65535	1000
P03.10	Current loop integral coefficient l	0–65535	1000
		1: Set via keypad (P03.12)	
		2: Set via Al1 (100% corresponds to three	
		times of rated motor current)	
		3: Set via Al2 (the same as above)	
		4: Set via Al3 (the same as above)	
		5: Set via pulse frequency HDIA (the same	
P03.11	Torque setup mode	as above)	1
F 03.11	selection	6: Set via multi-step torque (the same as	'
		above)	
		7: Set via MODBUS communication (the	
		same as above)	
		8: Set via PROFIBUS/CANopen/DeviceNet	
		communication (the same as above)	
		9: Set via Ethernet communication (the same	

Function	Name	Detailed parameter description	Default
code	Name	Detailed parameter description	value
		as above)	
		10: Set via pulse frequency HDIB (the same	
		as above)	
		11: Set via EtherCat/Profinet communication	
		12: Set via PLC	
		Note: Set mode 2–12, 100% corresponds to	
		three times of rated motor current.	
P03.12	Torque set by keypad	-300.0%–300.0% (rated motor current)	50.0%
P03.13	Torque reference filter time	0.000-10.000s	0.010s
		0: Keypad (P03.16)	
		1: AI1 (100% corresponds to max. frequency)	
		2: Al2 (the same as above)	
		3: Al3 (the same as above)	
		4: Pulse frequency HDIA (the same as above)	
		5: Multi-step (the same as above)	
	Source of upper limit frequency setup of forward rotation in torque control	6: MODBUS communication (the same as	
		above)	0
500.44		7: PROFIBUS /CANopen/ DeviceNet	
P03.14		communication (the same as above)	
		8: Ethernet communication (the same as	
		above)	
		9: Pulse frequency HDIB (the same as above)	
		10: EtherCat/Profinet communication	
		11: PLC	
		12: Reserved	
		Note: Source 1-11, 100% relative to the	
		max. frequency	
	Source of upper limit	0.16	
P03.15	frequency setup of reverse	0: Keypad (P03.17)	0
	rotation in torque control	1–11: the same as P03.14	
	Keypad limit value of upper		
P03.16	limit frequency of forward		50.00Hz
	rotation in torque control	Value range: 0.00 Hz–P00.03 (Max. output	
	Keypad limit value of upper	1 '	
	limit frequency of reverse		50.00Hz
	rotation in torque control		
D00.40	Source of upper limit setup	0. Karmad (D02 20)	0
P03.18	of the torque when motoring	0: Keypad (P03.20)	0

Function code	Name	Detailed parameter description	Default value
500.0		1: Al1 (100% relative to three times of motor	1311315
		current)	
		2: Al2 (the same as above)	
		3: Al3 (the same as above)	
		4: Pulse frequency HDIA (the same as above)	
		5: MODBUS communication (the same as	
		above)	
		6: PROFIBUS/CANopen/DeviceNet	
		communication (the same as above)	
		7: Ethernet communication (the same as	
		above)	
		8: Pulse frequency HDIB (the same as above)	
		9: EtherCat/Profinet communication	
		10: PLC	
		11: Reserved	
		Note: Source 1–10, 100% relative to three	
		times of motor current.	
	Source of upper limit setup	0: Keypad (P03.21)	
P03.19	of brake torque	1–10: the same as P03.18	0
	Set upper limit of the torque		
P03.20	when motoring via keypad		180.0%
	Set upper limit of brake	0.0–300.0% (rated motor current)	
P03.21	torque via keypad		180.0%
	Flux-weakening coefficient		+
P03.22	in constant power area	0.1–2.0	0.3
	Min. flux-weakening point in		
P03.23	constant power area	10%–100%	20%
P03.24	Max. voltage limit	0.0–120.0%	100.0%
P03.25	Pre-exciting time	0.000-10.000s	0.300s
		0:Disable	
P03.32	Torque control enable	1:Enable	0
		Ones place: Reserved	
		0: Reserved	
		1: Reserved	0x0000
P03.35	Control optimization setting	Tens place: Reserved	
		0: Reserved	
		1: Reserved	

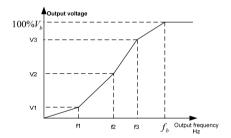
Function code	Name	Detailed parameter description	Default value
		Hundreds place: ASR integral separation	
		enabling	
		0: Disabled	
		1: Enabled	
		Thousands place: Reserved	
		0: Reserved	
		1: Reserved	
		Range: 0x0000–0x1111	
P03.36	ASR differential gain	0.00-10.00s	0.00s
P03.37	High-frequency ACR	In the closed-loop vector control mode	1000
P03.37	proportional coefficient	(P00.00=3), when the frequency is lower than	
D00.00	High-frequency ACR integral	the ACR high-frequency switching threshold	1000
P03.38	coefficient	(P03.39), the ACR PI parameters are P03.09	
		and P03.10; and when the frequency is higher	
		than the ACR high-frequency switching	
		threshold (P03.39), the ACR PI parameters	
P03.39	ACR high-frequency	are P03.37 and P03.38.	400.00/
	switching threshold	Setting range of P03.37: 0–20000	100.0%
		Setting range of P03.38: 0–20000	
		Setting range of P03.39: 0.0-100.0% (in	
		relative to the maximum frequency)	
P17.32	Flux linkage	0.0–200.0%	0.0%

5.8.4 SVPWM control mode

MSI350 inverter also carries built-in SVPWM control function. SVPWM mode can be used in cases where mediocre control precision is enough. In cases where an inverter needs to drive multiple motors, it is also recommended to adopt SVPWM control mode.

MSI350 inverter provides multiple kinds of V/F curve modes to meet different field needs. Users can select corresponding V/F curve or set the V/F curve as needed.

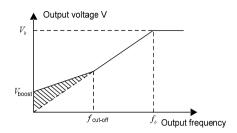
Suggestions:


- 1. For the load featuring constant moment, eg, conveyor belt which runs in straight line, as the moment should be constant during the whole running process, it is recommended to adopt straight-type V/F curve.
- 2. For the load featuring decreasing moment, eg, fan and water pump, as the relation between its actual torque and speed is squared or cubed, it is recommended to adopt the V/F

curve corresponds to power 1.3, 1.7 or 2.0.

MSI350 inverter also provides multi-point V/F curve. Users can alter the V/F curve outputted by inverter through setting the voltage and frequency of the three points in the middle. The whole curve consists of five points starting from (0Hz, 0V) and ending in (fundamental motor frequency, rated motor voltage). During setup, it is required that $0 \le f1 \le f2 \le f3 \le f$ fundamental motor frequency, and $0 \le V1 \le V2 \le V3 \le f$ motor voltage

MSI350 inverter provides dedicated function codes for SVPWM control mode. Users can improve the performance of SVPWM through settings.


Torque boost

Torque boost function can effectively compensate for the low-speed torque performance during SVPWM control. Automatic torque boost has been set by default to enable the inverter to adjust the torque boost value based on actual load conditions.

Note:

- (1) Torque boost is effective only under torque boost cut-off frequency;
- (2) If the torque boost is too large, low-frequency vibration or overcurrent may occur to the motor, if such situation occurs, lower the torque boost value.

2. Energy-saving run

During actual running, the inverter can search for the max. efficiency point to keep running in the most efficient state to save energy.

Note:

- (1) This function is generally used in light load or no-load cases.
- (2) This function does for fit in cases where load transient is required.
- 3. V/F slip compensation gain

SVPWM control belongs to open-loop mode, which will cause motor speed to fluctuate when motor load transients. In cases where strict speed requirement is needed, users can set the slip compensation gain to compensate for the speed variation caused by load fluctuation through internal output adjustment of inverter.

The set range of slip compensation gain is 0–200%, in which 100% corresponds to rated slip frequency.

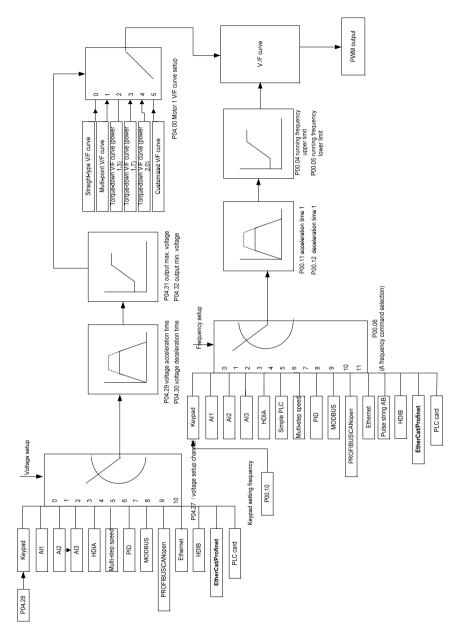
Note: Rated slip frequency= (rated synchronous speed of motor-rated speed of motor) × number of motor pole pairs/60

4. Oscillation control

Motor oscillation often occurs in SVPWM control in large-power drive applications. To solve this problem, MSI350 series inverter sets two function codes to control the oscillation factor, and users can set the corresponding function code based on the occurrence frequency of oscillation.

Note: The larger the set value, the better the control effect, however, if the set value is too large, it may easily lead to too large inverter output current.

Asynchonous motor IF control


Generally, the IF control mode is valid for asynchronous motors. It can be used for a synchronous motor only when the frequency of the synchronous motor is extremely low. Therefore, the IF control described in this manual is only involved with asynchronous motors. IF control is implemented by performing closed-loop control on the total output current of the inverter. The output voltage adapts to

the current reference, and open-loop control is separately performed over the frequency of the voltage and current.

Customized V/F curve (V/F separation) function:

When selecting customized V/F curve function, users can set the reference channels and

acceleration/deceleration time of voltage and frequency respectively, which will form a real-time V/F curve through combination.

Note: This kind of V/F curve separation can be applied in various frequency-conversion power sources, however, users should be cautious of parameter setup as improper setup may damage the machine.

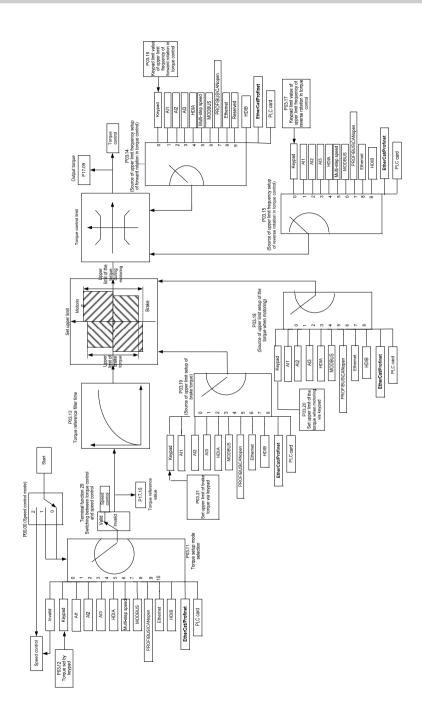
Function code	Name	Detailed parameter description	Default value
		0:SVC 0 1:SVC 1 2:SVPWM	
P00.00	Speed control mode	2:5VPVVIVI 3:VC	2
		Note: If 0, 1 or 3 is selected, it is required to carry out motor parameter autotuning first.	
P00.03	Max. output frequency	P00.04–400.00Hz	50.00Hz
P00.04	Upper limit of running frequency	P00.05–P00.03	50.00Hz
P00.05	Lower limit of running frequency	0.00Hz-P00.04	0.00Hz
P00.11	Acceleration time 1	0.0–3600.0s	Depend on model
P00.12	Deceleration time 1	0.0–3600.0s	Depend on model
P02.00	Type of motor 1	Asynchronous motor Synchronous motor	0
P02.02	Rated power of asynchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
P02.04	Rated voltage of asynchronous motor 1	0–1200V	Depend on model
		0: Straight-type V/F curve 1: Multi-point V/F curve	
P04.00	V/F curve setting of motor 1	2: Torque-down V/F curve (power 1.3) 3: Torque-down V/F curve (power 1.7) 4: Torque-down V/F curve (power 2.0)	0
		5: Customized V/F (V/F separation)	
P04.01	Torque boost of motor	0.0%: (automatic) 0.1%–10.0%	0.0%
P04.02	Motor 1 torque boost cut-off	0.0%–50.0% (rated frequency of motor 1)	20.0%
P04.03	V/F frequency point 1 of motor 1	0.00Hz-P04.05	0.00Hz

Function code	Name	Detailed parameter description	Default value
P04.04	V/F voltage point 1 of motor 1	0.0%–110.0%	0.0%
P04.05	V/F frequency point 2 of motor 1	P04.03- P04.07	0.00Hz
P04.06	V/F voltage point 2 of motor 1	0.0%–110.0%	0.0%
P04.07	V/F frequency point 3 of motor 1	P04.05- P02.02 or P04.05- P02.16	0.00Hz
P04.08	V/F voltage point 3 of motor 1	0.0%–110.0%	0.0%
P04.09	V/F slip compensation gain of motor 1	0.0–200.0%	100.0%
P04.10	Low-frequency oscillation control factor of motor 1	0–100	10
P04.11	High-frequency oscillation control factor of motor 1	0–100	10
P04.12	Oscillation control threshold of motor 1	0.00Hz–P00.03 (Max. output frequency)	30.00Hz
P04.13	V/F curve setup of motor 2	0: Straight V/F curve; 1: Multi-point V/F curve 2: Torque-down V/F curve (1.3 th order) 3: Torque-down V/F curve (1.7 th order) 4: Torque-down V/F curve (2.0 th order) 5: Customize V/F (V/F separation)	0
P04.14	Torque boost of motor 2	0.0%: (automatic) 0.1%–10.0%	0.0%
P04.15	Motor 2 torque boost cut-off	0.0%–50.0% (rated frequency of motor 1)	20.0%
P04.16	V/F frequency point 1 of motor 2	0.00Hz-P04.18	0.00Hz
P04.17	V/F voltage point 1 of motor 2	0.0%–110.0%	0.0%
P04.18	V/F frequency point 2 of motor 2	P04.16- P04.20	0.00Hz
P04.19	V/F voltage point 2 of	0.0%-110.0%	0.0%

Function code	Name	Detailed parameter description	Default value
	motor 2		
P04.20	V/F frequency point 3 of motor 2	P04.18– P02.02 or P04.18– P02.16	0.00Hz
P04.21	V/F voltage point 3 of motor 2	0.0%–110.0%	0.0%
P04.22	V/F slip compensation gain of motor 2	0.0–200.0%	100.0%
P04.23	Low-frequency oscillation control factor of motor 2	0–100	10
P04.24	High-frequency oscillation control factor of motor 2	0–100	10
P04.25	Oscillation control threshold of motor 2	0.00Hz–P00.03 (Max. output frequency)	30.00Hz
P04.26	Energy-saving run	0: No 1: Automatic energy-saving run	0
P04.27	Channel of voltage setup	0: Keypad; output voltage is determined by P04.28 1: Al1 2: Al2 3: Al3 4: HDIA 5: Multi-step 6: PID 7: MODBUS communication 8: PROFIBUS/CANopen communication 9: Ethernet communication 10: HDIB 11: EtherCat/Profinet communication 12: PLC card 13: Reserved	0
P04.28	Set voltage value via keypad	0.0%–100.0% (rated motor voltage)	100.0%
P04.29	Voltage increase time	0.0–3600.0s	5.0s
P04.30	Voltage decrease time	0.0–3600.0s	5.0s
P04.31	Output max. voltage	P04.32–100.0% (rated motor voltage)	100.0%
P04.32	Output min. voltage	0.0%–P04.31 (rated motor voltage)	0.0%

Function code	Name	Detailed parameter description	Default value
	Flux-weakening coefficient in the constant power zone	1.00–1.30	1.00
P04.34	Input current 1 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is lower than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	20.0%
P04.35	Input current 2 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is higher than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	10.0%
P04.36	Frequency threshold for input current switching in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the frequency threshold for the switching between input current 1 and input current 2. Setting range: 0.00 Hz–P00.03 (Max. output frequency)	50.00Hz
P04.37	Reactive current closed-loop proportional coefficient in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the proportional coefficient of the reactive current closed-loop control. Setting range: 0–3000	50
P04.38	Reactive current closed-loop integral time in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the integral coefficient of the reactive current closed-loop control. Setting range: 0–3000	30
P04.39	Reactive current closed-loop output limit in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the output limit of the reactive current closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the	8000

Function code	Name	Detailed parameter description	Default value
		motor. In general, you do not need to modify this parameter. Setting range: 0–16000	
P04.40	Enable/disable IF mode for asynchronous motor 1	0: Disabled 1: Enabled	0
P04.41	Current setting in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%
P04.42	Proportional coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0–5000	650
P04.43	Integral coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the integral coefficient of the output current closed-loop control. Setting range: 0–5000	350
P04.44	Frequency threshold for switching off IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the frequency threshold for switching off the output current closed-loop control. When the frequency is lower than the value of this parameter, the current closed-loop control in the IF control mode is enabled; and when the frequency is higher than that, the current closed-loop control in the IF control mode is disabled. Setting range: 0.00–20.00 Hz	10.00Hz
P04.45	Enable/disable IF mode for asynchronous motor 2	0: Disabled 1: Enabled	0
P04.46	Current setting in IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%
P04.47	Proportional coefficient in IF mode for	When IF control is adopted for asynchronous motor 2, this parameter is used to set the proportional	650



Function code	Name	Detailed parameter description	Default value
	asynchronous motor 2	coefficient of the output current closed-loop control. Setting range: 0–5000	
P04.48	Integral coefficient in IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the inetgral coefficient of the output current closed-loop control. Setting range: 0–5000	350
P04.49	Frequency threshold for switching off IF mode for asynchronous motor 2	When IF control is adopted for asynchronous motor 2, this parameter is used to set the frequency threshold for switching off the output current closed-loop control. When the frequency is lower than the value of this parameter, the current closed-loop control in the IF control mode is enabled; and when the frequency is higher than that, the current closed-loop control in the IF control mode is disabled. Setting range: 0.00–20.00 Hz	10.00Hz

5.8.5 Torque control

MSI350 inverter supports torque control and speed control. Speed control mode aims to stabilize the speed to keep the set speed consistent with the actual running speed, meanwhile, the max. load-carrying capacity is restricted by torque limit. Torque control mode aims to stabilize the torque to keep the set torque consistent with the actual output torque, meanwhile, the output frequency is restricted by upper/lower limit.

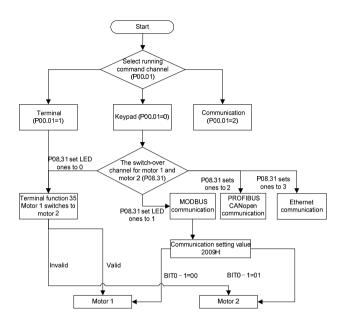
Function	Name	Detailed parameter description	Default
code		0.000	value
P00.00	Speed control mode	0:SVC 0 1:SVC 1 2:SVPWM 3:VC Note: If 0, 1 or 3 is selected, it is required to carry out motor parameter autotuning first.	2
	Torque control	0:Disable	_
P03.32	enable	1:Enable	0
P03.11	Torque setup mode selection	above) 8: Set via PROFIBUS/CANopen/DeviceNet communication (the same as above) 9: Set via Ethernet communication (the same as above) 10: Set via pulse frequency HDIB (the same as above) 11: Set via EtherCat/Profinet communication 12: Set via PLC Note: Set mode 2–12, 100% corresponds to three times of rated motor current.	
P03.12	Torque set by keypad	-300.0%-300.0% (rated motor current)	50.0%
P03.13	Torque reference filter time	0.000–10.000s	0.010s
P03.14	Source of upper limit frequency setup of forward rotation in torque control	0: Keypad (P03.16) 1: Al1 (100% corresponds to max. frequency) 2: Al2 (the same as above) 3: Al3 (the same as above) 4: Pulse frequency HDIA (the same as above)	0

Function code	Name	Detailed parameter description	Default value
code		5: Multi-step (the same as above) 6: MODBUS communication (the same as above) 7: PROFIBUS /CANopen/ DeviceNet communication (the same as above) 8: Ethernet communication (the same as above) 9: Pulse frequency HDIB (the same as above) 10: EtherCat/Profinet communication 11: PLC 12: Reserved Note: Source 1-11, 100% relative to the max.	value
P03.15	Source of upper limit frequency setup of reverse rotation in torque control	frequency 0: Keypad (P03.17) 1: Al1 (100% corresponds to max. frequency) 2: Al2 (the same as above) 3: Al3 (the same as above) 4: Pulse frequency HDIA (the same as above) 5: Multi-step (the same as above) 6: MODBUS communication (the same as above) 7: PROFIBUS /CANopen/ DeviceNet communication (the same as above) 8: Ethernet communication (the same as above) 9: Pulse frequency HDIB (the same as above) 10: EtherCat/Profinet communication 11: PLC 12: Reserved Note: Source 1-11, 100% relative to the max. frequency	0
P03.16	Keypad limit value of upper limit frequency of forward rotation in torque control	0.00Hz-P00.03 (Max. output frequency)	50.00 Hz
P03.17	Keypad limit value of upper limit frequency of reverse rotation in torque control	0.00Hz-P00.03 (Max. output frequency)	50.00 Hz

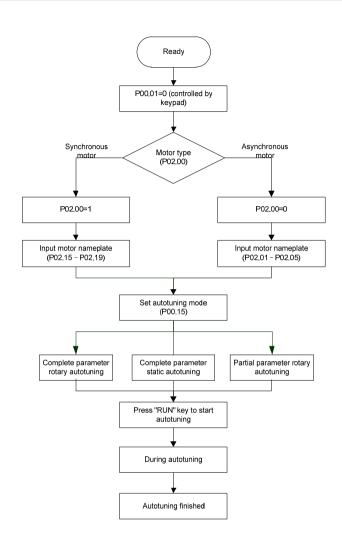
Function code	Name Detailed parameter description		Default value
code		0: Kounad (D03 20)	value
P03.18	Source of upper limit setup of the torque during motoring	O: Keypad (P03.20) 1: Al1 (100% relative to three times of motor current) 2: Al2 (the same as above) 3: Al3 (the same as above) 4: Pulse frequency HDIA (the same as above) 5: MODBUS communication (the same as above) 6: PROFIBUS/CANopen/DeviceNet communication (the same as above) 7: Ethernet communication (the same as above) 8: Pulse frequency HDIB (the same as above) 9: EtherCat/Profinet communication 10: PLC 11: Reserved Note: Source 1–10, 100% relative to three times of motor current.	0
P03.19	O: Keypad (P03.21) 1: Al1 (100% relative to three times of motor current) 2: Al2 (the same as above) 3: Al3 (the same as above) 4: Pulse frequency HDIA (the same as above) 5: MODBUS communication (the same as above) 6: PROFIBUS/CANopen/DeviceNet communication (the same as above) 7: Ethernet communication (the same as above) 8: Pulse frequency HDIB (the same as above) 9: EtherCat/Profinet communication 10: PLC 11: Reserved Note: Source 1–10, 100% relative to three times of		0
P03.20	Set upper limit of the torque when motoring via keypad	motor current. 0.0–300.0% (rated motor current)	180.0%
P03.21	Set upper limit of brake torque via	0.0-300.0% (rated motor current)	180.0%

Function code	Name	Detailed parameter description	Default value
	keypad		
P17.09	Motor output torque	-250.0–250.0%	0.0%
P17.15	Torque reference value	-300.0–300.0% (rated motor current)	0.0%

5.8.6 Motor parameter


- Check the safety conditions surrounding the motor and load machineries before autotuning as physical injury may occur due to sudden start of motor during autotuning.
- \diamond Although the motor does not run during static autotuning, the motor is stilled supplied with power, do not touch the motor during autotuning; otherwise, electric shock may occur.

If the motor has been connected to load, do not carry out rotary autotuning; otherwise, misact or damage may occur to the inverter. If rotary autotuning is carried out on a motor which has been connected to load, wrong motor parameters and motor misacts may occur. Disconnect the load to carry out autotuning if necessary.


MSI350 inverter can drive asynchronous motors and synchronous motors, and it supports two sets of motor parameters, which can be switched over by multi-function digital input terminals or communication modes.

The control performance of the inverter is based on accurate motor model, therefore, users need to carry out motor parameter autotuning before running the motor for the first time (take motor 1 as an example)

Note:

- 1. Motor parameters must be set correctly according to motor nameplate;
- If rotary autotuning is selected during motor autotuning, it is a must to disconnect the motor from load to put the motor in static and no-load state, failed to do so may lead to inaccurate autotuned results. At this time, the asynchronous motor can autotune P02.06–P02.10, and synchronous motor can autotune P02.20–P02.23
- 3. If static autotuning is selected during motor autotuning, there is no need to disconnect the motor from load, as only part of the motor parameters have been autotuned, the control performance may be impacted, under such situation, the asynchronous motor can autotune P02.06–P02.10, while synchronous motor can autotune P02.20–P02.22, P02.23 (counter-emf constant of synchronous motor 1) can be obtained via calculation.
- Motor autotuning can be carried out on current motor only, if users need to perform autotuning on the other motor, switch over the motor through selecting the switch-over channel of motor 1 and motor 2 by setting the ones of P08.31.

Related parameter list:

Function code	Name	Detailed parameter description	Default value
		0: Keypad	
P00.01	Running command channel	1: Terminal	0
		2: Communication	
		0: No operation	
		1: Rotary autotuning; carry out	
		comprehensive motor parameter	
		autotuning; rotary autotuning is used in	
		cases where high control precision is	
	Motor parameter autotuning	required;	0
		2: Static autotuning 1 (comprehensive	
P00.15		autotuning); static autotuning 1 is used in	
P00.15		cases where the motor cannot be	
		disconnected from load;	
		3: Static autotuning 2 (partial autotuning) ;	
		when current motor is motor 1, only	
		P02.06, P02.07 and P02.08 will be	
		autotuned; when current motor is motor 2,	
		only P12.06, P12.07 and P12.08 will be	
		autotuned.	
P02.00	Type of motor 1	0: Asynchronous motor	0
F 02.00	Type of filotor 1	1: Synchronous motor	0
P02.01	Rated power of asynchronous	0.1–3000.0kW	Depend
FUZ.U1	motor 1	0.1-3000.0KVV	on model
P02.02	Rated frequency of asynchronous motor 1	0.01Hz–P00.03 (Max. output frequency)	50.00Hz

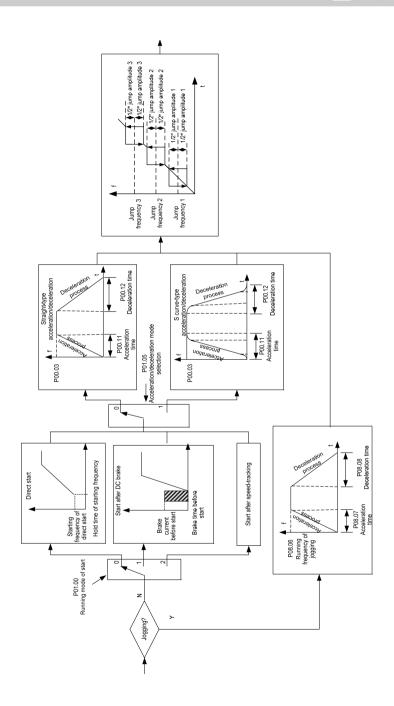
Function code	Name	Detailed parameter description	Default value
D00.00	Rated speed of asynchronous	4.00000	Depend
P02.03	motor 1	1–36000rpm	on model
P02.04	Rated voltage of	0–1200V	Depend
1 02.04	asynchronous motor 1	0-1200 V	on model
P02.05	Rated current of	0.8–6000.0A	Depend
. 02.00	asynchronous motor 1		on model
P02.06	Stator resistance of	0.001–65.535Ω	Depend
	asynchronous motor 1		on model
P02.07	Rotor resistance of	0.001–65.535Ω	Depend
	asynchronous motor 1		on model
P02.08	Leakage inductance of	0.1–6553.5mH	Depend
	asynchronous motor 1		on model
P02.09	Mutual inductance of	0.1–6553.5mH	Depend
	asynchronous motor 1		on model
P02.10	No-load current of	0.1–6553.5A	Depend on model
	asynchronous motor 1 Rated power of synchronous	0.1–3000.0kW	Depend
P02.15	motor 1		on model
	Rated frequency of	0.01Hz-P00.03 (Max. output frequency)	50.00Hz
P02.16	synchronous motor 1		
	Number of pole pairs of	1–50	2
P02.17	synchronous motor 1		
D00.40	Rated voltage of synchronous	0–1200V	Depend
P02.18	motor 1		on model
D00.40	Rated current of synchronous	0.0.000.04	Depend
P02.19	motor 1	0.8–6000.0A	on model
P02.20	Stator resistance of	0.001–65.535Ω	Depend
FU2.20	synchronous motor 1	0.001-05.55522	on model
P02.21	Direct-axis inductance of	0.01–655.35mH	Depend
FUZ.Z1	synchronous motor 1	0.01-055.55HIFI	on model
P02.22	Quadrature-axis inductance of	0.01–655.35mH	Depend
F 02.22	synchronous motor 1	0.01-033.331111	on model
P02.23	Counter-emf constant of	0–10000	300
1 02.20	synchronous motor 1		300
P05.01-	Function of multi-function		
P05.01=	digital input terminal (S1–S4,	35: Motor 1 switches to motor 2	/
. 00.00	HDIA,HDIB)		

Function	Name	Detailed parameter description	Default
code	Name	Detailed parameter description	value
		0x00-0x14	
		Ones: Switch-over channel	
		0: Switch over by terminal	
		1: Switch over by MODBUS	
		communication	
	Switching between motor 1	2: Switch over by PROFIBUS / CANopen	
P08.31	and motor 2	/Devicenet	00
	und motor 2	3: Switch over by Ethernet communication	
		4: Switch over by EtherCat/Profinet	
		communication	
		Tens: Motor switch-over during running	
		0: Disable switch-over during running	
		1: Enable switch-over during running	
P12.00	Type of motor 2	0: Asynchronous motor	0
1 12.00	Type of motor 2	1: Synchronous motor	Ů
P12.01	Rated power of asynchronous	0.1–3000.0kW	Depend
1 12.01	motor 2		on model
P12.02	Rated frequency of	0.01Hz–P00.03 (Max. output frequency)	50.00Hz
	asynchronous motor 2		
P12.03	Rated speed of asynchronous	1–36000rpm	
	motor 2		
P12.04	Rated voltage of	0–1200V	
	asynchronous motor 2		
P12.05	Rated current of	0.8–6000.0A	
	asynchronous motor 2		
P12.06	Stator resistance of	0.001–65.535Ω	
	asynchronous motor 2		
P12.07	Rotor resistance of	0.001–65.535Ω	Depend
	asynchronous motor 2		on model
P12.08	Leakage inductance of	0.1–6553.5mH	
	asynchronous motor 2		
P12.09	Mutual inductance of	0.1–6553.5mH	
P12.10	asynchronous motor 2		
	No-load current of	0.1–6553.5A	
	asynchronous motor 2		
P12.15	Rated power of synchronous motor 2	s 0.1–3000.0kW	
	motor 2		

Function code	Name	Detailed parameter description	Default value
P12.16	Rated frequency of synchronous motor 2	0.01Hz-P00.03 (Max. output frequency)	50.00Hz
P12.17	Number of pole pairs of synchronous motor 2	1–50	2
P12.18	Rated voltage of synchronous motor 2	0–1200V	Depend on model
P12.19	Rated current of synchronous motor 2	0.8–6000.0A	Depend on model
P12.20	Stator resistance of synchronous motor 2	0.001–65.535Ω	Depend on model
P12.21	Direct-axis inductance of synchronous motor 2	0.01–655.35mH	Depend on model
P12.22	Quadrature-axis inductance of synchronous motor 2	0.01–655.35mH	Depend on model
P12.23	Counter-emf constant of synchronous motor 2	0–10000	300

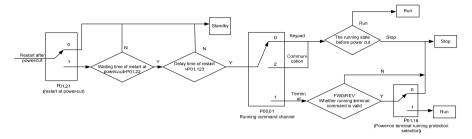
5.8.7 Start/stop control

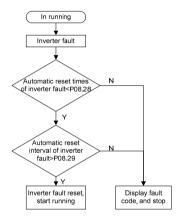
The start/stop control of the inverter is divided into three states: start after running command at powerup; start after restart-at-power-cut function is effective; start after automatic fault reset. Descriptions for these three start/stop control states are presented below.


There are three start modes for the inverter, which are start at starting frequency, start after DC brake, and start after speed-tracking. Users can select the proper start mode based on field conditions.

For large-inertia load, especially in cases where reversal may occur, users can choose to start after DC brake or start after speed-racking.

Note: It is recommended to drive synchronous motors in direct start mode.


1. Logic diagram for running command after power-up



2. Logic diagram for restart after power-cut

3. Logic diagram for restart after automatic fault reset

Related parameter list:

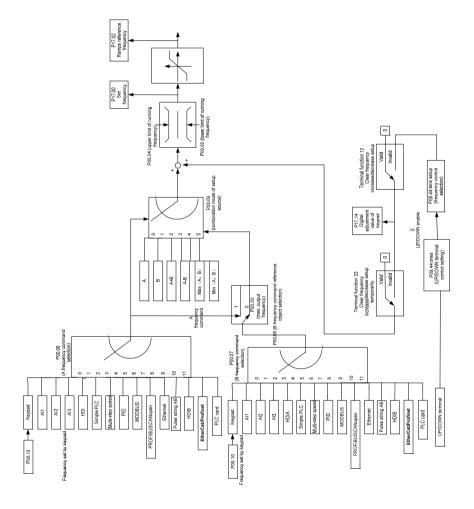
Function code	Name	Detailed parameter description	Default value
		0: Keypad	
P00.01	Running command channel	1: Terminal	0
		2: Communication	
D00 44	Acceleration time 1	0.0–3600.0s	Depend
P00.11			on model
P00.12	Deceleration time 1	0.0–3600.0s	Depend
P00.12			on model
		0: Direct start	
D04.00		1: Start after DC brake	0
P01.00	Running mode of start	2: Start after speed-track 1	0
		3: Start after speed-track 2	

Function code	Name	Detailed parameter description	Default value
P01.01	Starting frequency of direct start	0.00-50.00Hz	0.50Hz
P01.02	Hold time of starting frequency	0.0-50.0s	0.0s
P01.03	DC brake current before start	0.0–100.0%	0.0%
P01.04	DC brake time before start	0.00-50.00s	0.00s
P01.05	Acceleration/deceleration mode	0: Straight line 1: S curve Note: If mode 1 is selected, it is required to set P01.07, P01.27 and P01.08 accordingly	0
P01.08	Stop mode	0: Decelerate to stop 1: Coast to stop	0
P01.09	Starting frequency of DC brake after stop	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P01.10	Waiting time of DC brake after stop	0.00-50.00s	0.00s
P01.11	DC brake current of stop	0.0–100.0%	0.0%
P01.12	DC brake time of stop	0.00-50.00s	0.00s
P01.13	Deadzone time of forward/reverse rotation	0.0-3600.0s	0.0s
P01.14	Forward/reverse rotation switch-over mode	0: switch over after zero frequency 1: switch over after starting frequency 2: switch over after passing stop speed and delay	0
P01.15	Stop speed	0.00-100.00Hz	0.50 Hz
P01.16	Stop speed detection mode	Set value of speed (the only detection mode valid in SVPWM mode) Detection value of speed	1
P01.18	Power-on terminal running protection selection	Terminal running command is invalid at power up Terminal running command is valid at power up	0
P01.19	Action selection when the running frequency is below lower limit (lower limit should	0: Run at the lower limit frequency 1: Stop 2: Sleep	0

Delarger than 0 P01.20 Wake-up-from-sleep delay 0.0–3600.0s (valid when P01.19 is 2) 0.0s	Function code	Name	Detailed parameter description	Default value
P01.21 Restart after power cut 1: Restart is disabled 1: Restart is enabled 0		be larger than 0)		
P01.21 Restart after power cut 1: Restart is enabled 0	P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when P01.19 is 2)	0.0s
P01.22 power cut 0.0-3600.0s (valid when P01.21 is 1) 1.0s	P01.21	Restart after power cut		0
P01.24 Stop speed delay 0.0–100.0s 0.0s	P01.22		0.0–3600.0s (valid when P01.21 is 1)	1.0s
P01.25 Open-loop OHz output selection P01.26 Deceleration time of emergency-stop P01.27 Time of starting section of deceleration S curve P01.28 Time of ending section of deceleration S curve P01.29 Short-circuit brake current P01.30 Hold time of short-circuit brake at startup P01.31 Hold time of short-circuit brake at stop P05.01-P05.06 Digital input function selection 1 P2. Reverse pigging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00Hz-P00.03 (Max. output frequency) 5.00Hz	P01.23	Start delay	0.0-60.0s	0.0s
P01.25 Open-loop 0Hz output selection P01.26 Deceleration time of emergency-stop P01.27 Time of starting section of deceleration S curve P01.28 Time of ending section of deceleration S curve P01.29 Short-circuit brake current P01.30 Hold time of short-circuit brake at startup P01.31 Hold time of short-circuit brake at stop P01.31 Digital input function selection P05.06 Digital input function selection P05.06 Running frequency of jog P08.06 Running frequency of jog P08.06 Running frequency of jog P01.26 Deceleration time of emergency-stop 1: With voltage output 2: Output as per DC brake current of stop 0.0–60.0s 0.0–50.0s 0.01s 0.01s 0.05 0.05 0.05 0.05 0.00s 0.00s	P01.24	Stop speed delay	0.0-100.0s	0.0s
P01.26 emergency-stop 0.0–60.0s 2.0s	P01.25		1: With voltage output	0
P01.27 deceleration S curve 0.0–50.0s 0.1s	P01.26		0.0-60.0s	2.0s
P01.28 deceleration S curve P01.29 Short-circuit brake current P01.30 Hold time of short-circuit brake at startup P01.31 Hold time of short-circuit brake at stop P01.31 Digital input function selection P05.01-P05.06 Digital input function selection P05.01-P05.06 Running frequency of jog P08.06 Running frequency of jog P08.06 Running frequency of jog P0.00-150.00s (rated inverter current) 0.00-150.00s (rated inverter current) 0.00-150.00s (rated inverter current) 0.00-150.00s 0.00s 0.00s 1: Forward running 2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00Hz-P00.03 (Max. output frequency) 5.00Hz	P01.27	l	0.0-50.0s	0.1s
P01.30 Hold time of short-circuit brake at startup P01.31 Hold time of short-circuit brake at stop 1: Forward running 2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00–50.00s 0.00s 1: Forward running 2: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00–50.00s 0.00s	P01.28		0.0-50.0s	0.1s
P01.30 brake at startup 0.00–50.00s 0.00s P01.31 Hold time of short-circuit brake at stop 0.00–50.00s 0.00s 1: Forward running 2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00Hz–P00.03 (Max. output frequency) 5.00Hz	P01.29	Short-circuit brake current	0.0-150.0% (rated inverter current)	0.0%
P05.01- P05.06 Digital input function selection P05.06 P08.06 Running frequency of jog 0.00-50.00s 1: Forward running 2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog 0.00Hz-P00.03 (Max. output frequency) 5.00Hz	P01.30		0.00-50.00s	0.00s
P05.01- P05.06 Digital input function selection P05.06 Digital input function selection P05.06 P05.06 Running frequency of jog P08.06 Running frequency of jog P08.06 Running Pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2 30: Acceleration/deceleration disabled P08.06 Running frequency of jog P08.06 Running frequency of jog P08.06	P01.31		0.00-50.00s	0.00s
P08.06 Running frequency of jog 0.00Hz–P00.03 (Max. output frequency) 5.00Hz		Digital input function selection	2: Reverse running 4: Forward jogging 5: Reverse jogging 6: Coast to stop 7: Fault reset 8: Running pause 21: Acceleration/deceleration time selection 1 22: Acceleration/deceleration time selection 2	I
3 1 7 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	P08 06	Running frequency of ica		5 00Hz
	P08.07	Acceleration time at jogging	0.0–3600.0s	Depend

Function code	Name	Detailed parameter description	Default value
			on model
P08.08	Deceleration time at jogging	0.0–3600.0s	Depend on model
P08.00	Acceleration time 2	0.0–3600.0s	Depend on model
P08.01	Declaration time 2	0.0–3600.0s	Depend on model
P08.02	Acceleration time 3	0.0–3600.0s	Depend on model
P08.03	Declaration time 3	0.0–3600.0s	Depend on model
P08.04	Acceleration time 4	0.0–3600.0s	Depend on model
P08.05	Declaration time 4	0.0–3600.0s	Depend on model
P08.19	Switching frequency of acceleration/deceleration time	0.00–P00.03 (Max. output frequency) 0.00Hz: No switch over If the running frequency is larger than P08.19, switch to acceleration /deceleration time 2	0
P08.21	Reference frequency of acceleration/deceleration time	0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid for straight-line acceleration/deceleration only	0
P08.28	Automatic fault reset times	0–10	0
P08.29	Automatic fault reset time interval	0.1–3600.0s	1.0s

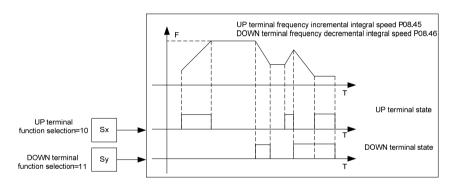
5.8.8 Frequency setup


MSI350 series inverter supports multiple kinds of frequency reference modes, which can be categorized into two types: main reference channel and auxiliary reference channel.

There are two main reference channels, namely frequency reference channel A and frequency reference channel B. These two channels support simple arithmetical operation between each other, and they can be switched dynamically by setting multi-function terminals.

There is one input mode for auxiliary reference channel, namely terminal UP/DOWN switch input. By setting function codes, users can enable the corresponding reference mode and the impact made on the inverter frequency reference by this reference mode.

The actual reference of inverter is comprised of the main reference channel and auxiliary reference channel.


MSI350 inverter supports switch-over between different reference channels, and the rules for channel switch-over are shown below.

Present reference channel P00.09	Multi-function terminal function 13 Channel A switches to channel B	Multi-function terminal function 14 Combination setup switches to channel A	Multi-function terminal function 15 Combination setup switches to channel B
Α	В	1	/
В	Α	1	1
A+B	1	Α	В
A-B	1	А	В
Max (A, B)	1	А	В
Min (A, B)	1	А	В

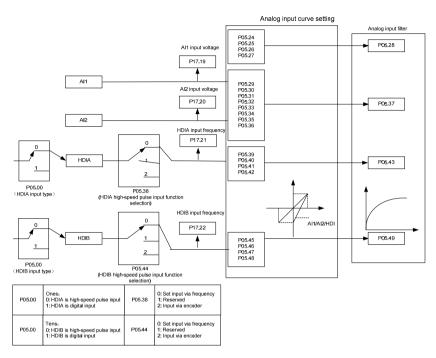
Note: "/" indicates this multi-function terminal is invalid under present reference channel.

When setting the auxiliary frequency inside the inverter via multi-function terminal UP (10) and DOWN (11), users can increase/decrease the frequency quickly by setting P08.45 (UP terminal frequency incremental change rate) and P08.46 (DOWN terminal frequency decremental change rate).

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P00.03	Max. output frequency	P00.04–400.00Hz	50.00Hz
P00.04	Upper limit of running frequency	P00.05-P00.03	50.00Hz
P00.05	Lower limit of running frequency	0.00Hz-P00.04	0.00Hz
P00.06	A frequency command selection	0: Set via keypad 1: Set via Al1	0
P00.07	B frequency command selection	2: Set via Al2 3: Set via Al3	15

Function	Name	Detailed parameter description	Default
code		·	value
		4: Set via high speed pulse HDIA	
		5: Set via simple PLC program	
		6: Set via multi-step speed running	
		7: Set via PID control	
		8: Set via MODBUS communication	
		9: Set via PROFIBUS / CANopen /	
		DeviceNet communication	
		10: Set via Ethernet communication	
		11: Set via high speed pulse HDIB	
		12: Set via pulse string AB	
		13: Set via EtherCat/Profinet	
		communication	
		14: Set via PLC card	
		15: Reserved	
P00.08	Reference object of B	0: Max. output frequency	0
F00.06	frequency command	1: A frequency command	U
	Combination mode of setup	0: A	
		1: B	
P00.09		2: (A+B)	0
F00.09	source	3: (A-B)	U
		4: Max (A, B)	
		5: Min (A, B)	
	Function of multi-function digital input terminal (S1–S4, HDIA, HDIB)	10: Frequency increase (UP)	
		11: Frequency decrease (DOWN)	
		12: Clear frequency increase/decrease	,
		setting	
P05.01-		13: Switch-over between setup A and	
P05.06		setup B	,
		14: Switch-over between combination	
		setup and setup A	
		15: Switch-over between combination	
		setup and setup B	
P08.42	Reserved variables	1	1
P08.43	Reserved variables	1	/
		0x000-0x221	
P08.44	UP/DOWN terminal control	Ones: Frequency enabling selection	0x000
		0: UP/DOWN terminal setting is valid	

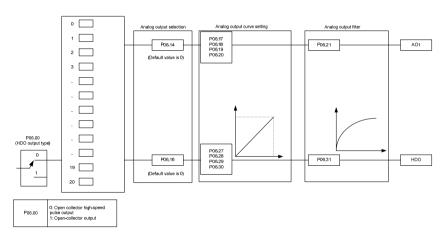


Function code	Name	Detailed parameter description	Default value
		1: UP/DOWN terminal setting is invalid	
		Tens: Frequency control selection	
		0: Valid only when P00.06=0 or P00.07=0	
		1: Valid for all frequency modes	
		2: Invalid for multi-step speed when multi-	
		step speed takes priority	
		Hundreds: Action selection at stop	
		0: Valid	
		1: Valid during running, clear after stop	
		2: Valid during running, clear after	
		receiving stop command	
P08.45	UP terminal frequency incremental change rate	0.01–50.00 Hz/s	0.50 Hz/s
P08.46	DOWN terminal frequency decremental change rate	0.01–50.00 Hz/s	0.50 Hz/s
P17.00	Set frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.02	Ramps reference frequency	0.00Hz–P00.03 (Max. output frequency)	0.00Hz
P17.14	Digital adjustment value	0.00Hz-P00.03	0.00Hz

5.8.9 Analog input

MSI350 series inverter carries two analog input terminals (Al1 is 0–10V/0–20mA (voltage input or current input can be set by P05.50); Al2 is -10–10V) and two high-speed pulse input terminals. Each input can be filtered separately, and the corresponding reference curve can be set by adjusting the reference corresponds to the max. value and min. value.

Function code	Name	Detailed parameter description	Default value
P05.00 HDI input type		0x00–0x11 Ones: HDIA input type 0: HDIA is high-speed pulse input 1: HDIA is digital input Tens: HDIB input type	0x00
		0: HDIB is high-speed pulse input 1: HDIB is digital input	
P05.24	Lower limit value of Al1	0.00V-P05.26	0.00V
P05.25	Corresponding setting of lower limit of Al1	-100.0%–100.0%	0.0%
P05.26	Upper limit value of AI1	P05.24-10.00V	10.00V
P05.27	Corresponding setting of upper limit of Al1	-100.0%–100.0%	100.0%
P05.28	Input filter time of AI1	0.000s-10.000s	0.100s


Function code	Name	Detailed parameter description	Default value	
P05.29	Lower limit value of Al2	-10.00V–P05.31	-10.00V	
P05.30	Corresponding setting of lower limit of Al2	-100.0%–100.0%	-100.0%	
P05.31	Intermediate value 1 of Al2	P05.29–P05.33	0.00V	
P05.32	Corresponding setting of intermediate value 1 of Al2	-100.0%–100.0%	0.0%	
P05.33	Intermediate value 2 of Al2	P05.31–P05.35	0.00V	
P05.34	Corresponding setting of intermediate value 2 of Al2	-100.0%–100.0%	0.0%	
P05.35	Upper limit value of Al2	P05.33-10.00V	10.00V	
P05.36	Corresponding setting of upper limit of Al2	-100.0%–100.0%	100.0%	
P05.37	Input filter time of AI2	0.000s-10.000s	0.100s	
P05.38	HDIA high-speed pulse input function	 Set input via frequency Reserved Input via encoder, used in combination with HDIB 	0	
P05.39	Lower limit frequency of HDIA	0.000 KHz – P05.41	0.000KHz	
P05.40	Corresponding setting of lower limit frequency of HDIA	-100.0%–100.0%	0.0%	
P05.41	Upper limit frequency of HDIA	P05.39 –50.000KHz	50.000KHz	
P05.42	Corresponding setting of upper limit frequency of HDIA	-100.0%–100.0%	100.0%	
P05.43	HDIA frequency input filter time	0.000s-10.000s	0.030s	
P05.44	HDIB high-speed pulse input function selection	O: Set input via frequency I: Reserved C: Input via encoder, used in combination with HDIA O: Set input via frequency O: Set input via frequency O: Set input via frequency O: Set input via frequency	0	
P05.45	Lower limit frequency of HDIB	0.000 KHz – P05.47	0.000KHz	
P05.46	Corresponding setting of lower limit frequency of HDIB	-100.0%–100.0%	0.0%	
P05.47	Upper limit frequency of HDIB	P05.45 –50.000KHz	50.000KHz	
P05.48	Corresponding setting of upper limit frequency of HDIB	-100.0%–100.0%	100.0%	

Function code	Name	Detailed parameter description	Default value
P05.49	HDIB frequency input filter time	0.000s-10.000s	0.030s
P05.50	Al1 input signal type	0–1 0: Voltage type 1: Current type	0

5.8.10 Analog output

MSI350 series inverter carries one analog output terminal (0–10V/0–20mA) and one high-speed pulse output terminal. Analog output signals can be filtered separately, and the proportional relation can be adjusted by setting the max. value, min. value, and the percentage of their corresponding output. Analog output signal can output motor speed, output frequency, output current, motor torque and motor power at a certain proportion.

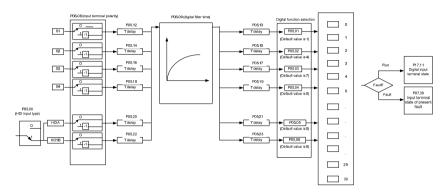
Instructions for output:

Set value	Function	Description					
0	Running frequency	0-Max. output frequency					
1	Set frequency	0-Max. output frequency					
2	Ramps reference frequency	0-Max. output frequency					
3	Running speed	0-Synchronous speed corresponding to Max. output frequency					
4	Output current (relative to inverter)	0–Two times of rated current of inverter					

Set value	Function	Description
5	Output current (relative to motor)	0-Two times of rated current of motor
6	Output voltage	0–1.5 times of rated voltage of inverter
7	Output power	0-Two times of rated power
8	Set torque value	0-Two times of rated current of motor
9	Output torque	0-Two times of rated current of motor
10	Al1 input value	0–10V/0–20mA
11	Al2 input value	-10V–10V
12	Al3 input value	0–10V/0–20mA
13	Input value of high-speed pulse HDIA	0.00–50.00kHz
14	Set value 1 of MODBUS communication	-1000–1000, 1000 corresponds to 100.0%
15	Set value 2 of MODBUS communication	-1000–1000, 1000 corresponds to 100.0%
16	Set value 1 of PROFIBUS\CANopen communication	-1000–1000, 1000 corresponds to 100.0%
17	Set value 2 of PROFIBUS\CANopen communication	-1000–1000, 1000 corresponds to 100.0%
18	Set value 1 of Ethernet communication	-1000–1000, 1000 corresponds to 100.0%
19	Set value 2 of Ethernet communication	-1000–1000, 1000 corresponds to 100.0%
20	Input value of high-speed pulse HDIB	0.00–50.00kHz
21	Reserved variable	
22	Torque current (bipolar, 100% corresponds to 10V)	0-Two times of rated current of motor
23	Exciting current (100% corresponds to 10V)	0-One times of rated current of motor
24	Set frequency (bipolar)	0-Max. output frequency
25	Ramps reference frequency (bipolar)	0-Max. output frequency
26	Running speed (bipolar)	0-Max. output frequency

Set value	Function	Description
	Set value 2 of	
27	EtherCat/Profinet	-1000-1000, 1000 corresponds to 100.0%
	communication	
28	C_AO1 from PLC	1000 corresponds to 100.0%
29	C_AO2 from PLC	1000 corresponds to 100.0%
30	Running speed	0-Two times of rated synchronous speed of motor
31–47	Reserved variable	

Function code	Name	Detailed parameter description	Default value
P06.00	HDO output type	0: Open collector high-speed pulse output	0
1 00.00	TIDO output type	1: Open collector output	U
P06.14	AO1 output selection	0: Running frequency	0
P06.15	Reserved variable	1: Set frequency	0
		2: Ramps reference frequency	-
		3: Running speed	
		4: Output current (relative to inverter)	
		5: Output current (relative to motor)	
		6: Output voltage	
	HDO high-speed pulse output	7: Output power	
		8: Set torque value	
		9: Output torque	
		10: Analog Al1 input value	
		11: Analog Al2input value	
		12: Analog Al3 input value	
P06.16		13: Input value of high-speed pulse HDIA	0
		14: Set value 1 of MODBUS	
		communication	
		15: Set value 2 of MODBUS	
		communication	
		16: Set value 1 of PROFIBUS\CANopen	
		communication	
		17: Set value 2 of PROFIBUS\CANopen	
		communication	
		18: Set value 1 of Ethernet	
		communication	
		19: Set value 2 of Ethernet	



Function code	Name	Detailed parameter description	Default value
		communication	
		20: Input value of high-speed pulse HDIB 21: Set value 1 of EtherCat/Profinet	
		communication	
		22: Torque current (bipolar, 100%	
		corresponds to 10V)	
		23: Exciting current (100% corresponds	
		to 10V)	
		24: Set frequency (bipolar)	
		25: Ramps reference frequency (bipolar)	
		26: Running speed (bipolar)	
		27: Set value 2 of EtherCat/Profinet	
		communication	
		28: C_AO1 from PLC (You need to set	
		P27.00 to 1.)	
		29: C_AO2 from PLC (You need to set	
		P27.00 to 1.)	
		30: Running speed 31–47: Reserved variable	
P06.17	Lower limit of AO1 output	-100.0%–P06.19	0.0%
P06.18	Corresponding AO1 output of lower limit	0.00V-10.00V	0.00V
P06.19	Upper limit of AO1 output	P06.17–100.0%	100.0%
P06.20	Corresponding AO1 output of upper limit	0.00V-10.00V	10.00V
P06.21	AO1 output filter time	0.000s-10.000s	0.000s
P06.22- P06.26	Reserved variable	0–65535	0
P06.27	Lower limit of HDO output	-100.0%–P06.29	0.0%
P06.28	Corresponding HDO output of lower limit	0.00-50.00kHz	0.0kHz
P06.29	Upper limit of HDO output	P06.27–100.0%	100.0%
P06.30	Corresponding HDO output of upper limit	0.00-50.00kHz	50.00kHz
P06.31	HDO output filter time	0.000s-10.000s	0.000s

5.8.11 Digital input

MSI350 series inverter carries four programmable digital input terminals and two HDI input terminals. The function of all the digital input terminals can be programmed by function codes. HDI input terminal can be set to act as high-speed pulse input terminal or common digital input terminal; if it is set to act as high-speed pulse input terminal, users can also set HDIA or HDIB high-speed pulse input to serve as the frequency reference and encoder signal input.

This parameter is used to set the corresponding function of digital multi-function input terminals.

Note: Two different multi-function input terminals cannot be set to the same function.

Set value	Function	Description
0	No function	The inverter does not act even if there is signal input; users can set the unused terminals to "no function" to avoid misacts.
1	Forward running (FWD)	Control the forward/reverse running of the inverter by
2	Reverse running (REV)	external terminals.
3	3-wire control/Sin	Set the inverter running mode to 3-wire control mode by this terminal. See P05.13 for details.
4	Forward jogging	Frequency when jogging, see P08.06, P08.07 and P08.08
5	Reverse jogging	for jogging acceleration/deceleration time.
6	Coast to stop	The inverter blocks output, and the stop process of motor is uncontrolled by the inverter. This mode is applied in cases of large-inertia load and free stop time; its definition is the same with P01.08, and it is mainly used in remote control.
7	Fault reset	External fault reset function, its function is the same with the STOP/RST key on the keypad. This function can be used in

Set value	Function	Description						
		remote fault reset.						
8	Running pause	The inverter decelerates to stop, however, all the running parameters are in memory state, eg PLC parameter, wobbling frequency, and PID parameter. After this signal disappears, the inverter will revert to the state before stop.						
9	External fault input	When external fault signal is transmitted to the inverter, the inverter releases fault alarm and stops.						
10	Frequency increase (UP)	Used to change the frequency-increase/decrease						
11	Frequency decrease (DOWN)	command when the frequency is given by external terminals.						
12	Clear frequency increase/decrease setting	The terminal used to clear frequency-increase/decrease setting can clear the frequency value of auxiliary channel set by UP/DOWN, thus restoring the reference frequency to the frequency given by main reference frequency command channel.						
13	Switching between A setting and B setting	This function is used to switch between the frequency setting channels.						
14	Switching between combination setting and A setting	A frequency reference channel and B frequency reference channel can be switched by no. 13 function; the combination channel set by P00.09 and the A frequency reference						
15	Switching between combination setting and B setting	channel can be switched by no. 14 function; the combination channel set by P00.09 and the B frequency reference channel can be switched by no. 15 function.						
16	Multi-step speed terminal 1	16-step speeds can be set by combining digital states of						
17	Multi-step speed terminal 2	these four terminals.						
18	Multi-step speed terminal 3	Note: Multi-step speed 1 is low bit, multi-step speed 4 is high bit.						
19	Multi-step speed terminal 4	Multi-step Multi-step Multi-step speed 4 speed 3 speed 2 speed 1						

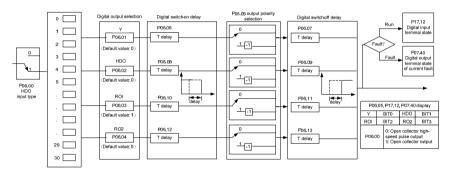
Set value	Function		Description							
			BIT:	3		BIT2 BIT1			BIT0	
20	Multi-step speed pause		Pause multi-step speed selection function to keep the se value in present state.							set
21	Acceleration/deceleration time selection 1		se these				to select	four	groups	of
		I I deceleration time I						sponding ameter	3	
	Acceleration/deceleration time		OFF	OF	F		leration/ ation time 1	P00.1	1/P00.12	2
22	selection 2		ON	OF	F		leration/ ation time 2	P08.0	0/P08.01	ı
			OFF	10	٧		leration/ ation time 3	P08.0	2/P08.03	3
			ON	10	٧		leration/ ation time 4	P08.0	4/P08.05	5
23	Simple PLC stop reset		Restart simple PLC process and clear previous PLC state information.							
24	Simple PLC pause	ru	The program pauses during PLC execution, and keeps running in current speed step. After this function is cancelled, simple PLC keeps running.							
25	PID control pause		D is ine				, and the	inverte	er mainta	ins
26	Wobbling frequency pause (stop at current frequency)	ca		it co	ntin		nt output. At bling-freque			
27	Wobbling frequency reset (revert to center frequency)	Tł	ne set fre	quenc	y of	inverter i	reverts to ce	enter fr	equency.	
28	Counter reset	Ze	ero out th	e cou	nter	state.				
29	Switching between speed control and torque control		ne inverte ontrol mod				orque contr	ol mod	de to spe	eed
30	Acceleration/deceleration disabled	(е	Ensure the inverter will not be impacted by external signals (except for stop command), and maintains current output frequency.							
31	Counter trigger	Eı	Enable pulse counting of the counter.							
33	Clear frequency	W	hen the	termi	nal	is closed	, the freque	ency v	alue set	by

Set value	Function	Description	
	increase/decrease setting	setting UP/DOWN can be cleared to restore the reference	
	temporarily	frequency to the frequency given by frequency command	
		channel; when terminal is disconnected, it will revert to the	
		frequency value after frequency increase/decrease setting.	
34	DC brake	The inverter starts DC brake immediately after the command becomes valid.	
35	Switching between motor 1	When this terminal is valid, users can realize switch-over	
	and motor 2	control of two motors.	
36	Command switches to keypad	When this terminal is valid, the running command channel will switch to keypad compulsorily. If this function becomes invalid, the running command channel will revert to the original state.	
37	Command switches to terminal	When this terminal is valid, the running command channel will switch to terminal compulsorily. If this function becomes invalid, the running command channel will revert to the original state.	
38	Command switches to communication	When this terminal is valid, the running command channel will switch to communication compulsorily. If this function becomes invalid, the running command channel will revert to the original state.	
39	Pre-exciting command	When this terminal is valid, motor pre-exciting will be started until this terminal becomes invalid.	
40	Zero out power consumption quantity	After this command becomes valid, the power consumption quantity of the inverter will be zeroed out.	
41	Maintain power consumption quantity	When this command is valid, current operation of the inverter will not impact the power consumption quantity.	
42	Source of upper torque limit switches to keypad	When this command is valid, the upper limit of the torque will be set by keypad	
56	Emergency stop	When this command is valid, the motor decelerate to emergency stop as per the time set by P01.26.	
57	Motor over-temperature fault input	Motor stops at motor over-temperature fault input.	
59	FVC switches to V/F control	When this terminal is valid in stop state, switch to SVPWM control.	
60	Switch to FVC control	When this terminal is valid in stop state, switch to closed-loop vector control.	
61	PID polarity switch-over	Switching the output polarity of PID, this terminal should be	

Set value	Function	Description
		used in conjunction with P09.03
66	Zero out the counter	Zero out the position counting value
67	Pulse increase	When the terminal function is valid, the pulse input is increased according to the P21.27 pulse speed.
68	Enable pulse superimposition	When the pulse superimposition is enabled, pulse increase and pulse decrease are effective.
69	Pulse decrease	When the terminal function is valid, the pulse input is decreased according to the P21.27 pulse speed.
70	Electronic gear selection	When the terminal is valid, the proportional numerator is switched to the P21.30 numerator of the 2 nd command ratio.
71–79	Reserved variables	1

Function code	Name	Detailed parameter description	Default value
code		0x00-0x11	value
		Ones: HDIA input type	
		0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is high-speed pulse input	0x00
F05.00	пы три туре		UXUU
		Tens: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
P05.01	Function of S1 terminal	0: No function	1
P05.02	Function of S2 terminal	1: Forward running	4
P05.03	Function of S3 terminal	2: Reverse running	7
DOE 04	Function of CA towning!	3: 3-wire control/Sin	0
P05.04	Function of S4 terminal	4: Forward jogging	0
P05.05	Function of HDIA terminal	5: Reverse jogging	0
P05.06	Function of HDIB terminal	6: Coast to stop	0
		7: Fault reset	
		8: Running pause	
		9: External fault input	
		10: Frequency increase (UP)	0
P05.07	Reserved variables	11: Frequency decrease (DOWN)	
		12: Clear frequency increase/decrease	
		setting	
		13: Switch-over between setup A and	
		setup B	

Function code	Name	Detailed parameter description	Default value
0000		14: Switch-over between combination	valuo
		setting and A setting	
		15: Switch-over between combination	
		setting and setup B	
		16: Multi-step speed terminal 1	
		17: Multi-step speed terminal 2	
		18: Multi-step speed terminal 3	
		19: Multi-step speed terminal 4	
		20: Multi-step speed pause	
		21: Acceleration/deceleration time	
		selection 1	
		22: Acceleration/deceleration time	
		selection 2	
		23: Simple PLC stop reset	
		24: Simple PLC pause	
		25: PID control pause	
		26: Wobbling frequency pause	
		27: Wobbling frequency reset	
		28: Counter reset	
		29: Switching between speed control	
		and torque control	
		30: Acceleration/deceleration disabled	
		31: Counter trigger	
		32: Reserved	
		33: Clear frequency increase/decrease	
		setting temporarily	
		34: DC brake	
		35: Switching between motor 1 and	
		motor 2	
		36: Command switches to keypad	
		37: Command switches to terminal	
		38: Command switches to	
		communication	
		39: Pre-exciting command	
		40: Zero out power consumption	
		quantity	
		41: Maintain power consumption	
		quantity	


Function	Name	Detailed parameter description	Default
code	Name	Detailed parameter description	value
		42: Source of upper torque limit	
		switches to keypad	
		56: Emergency stop	
		57: Motor over-temperature fault input	
		59: Switch to V/F control	
		60: Switch to FVC control	
		61: PID polarity switch-over	
		66: Zero out encoder counting	
		67: Pulse increase	
		68: Enable pulse superimposition	
		69: Pulse decrease	
		70: Electronic gear selection	
		71–79: Reserved	
P05.08	Polarity of input terminal	0x00-0x3F	0x00
P05.09	Digital filter time	0.000-1.000s	0.010s
	Virtual terminal setting	0x00-0x3F (0: disable, 1: enable)	
		BIT0: S1 virtual terminal	0x00
		BIT1: S2 virtual terminal	
P05.10		BIT2: S3 virtual terminal	
		BIT3: S4 virtual terminal	
		BIT4: HDIA virtual terminal	
		BIT8: HDIB virtual terminal	
		0: 2-wire control 1	
P05.11	2/3-wire control mode	1: 2-wire control 2	0
		2: 3-wire control 1 3: 3-wire control 2	
P05.12	C1 terminal quitab en delev	0.000–50.000s	0.000s
P05.12	S1 terminal switch-on delay	0.000–50.000s	0.000s
	S1 terminal switch-off delay		
P05.14	S2 terminal switch-on delay	0.000–50.000s	0.000s
P05.15	S2 terminal switch-off delay	0.000-50.000s	0.000s
P05.16	S3 terminal switch-on delay	0.000-50.000s	0.000s
P05.17	S3 terminal switch-off delay	0.000-50.000s	0.000s
P05.18	S4 terminal switch-on delay	0.000–50.000s	0.000s
P05.19	S4 terminal switch-off delay	0.000–50.000s	0.000s
P05.20	HDIA terminal switch-on delay	0.000-50.000s	0.000s

Function code	Name	Detailed parameter description	Default value
P05.21	HDIA terminal switch-off delay	0.000-50.000s	0.000s
P05.22	HDIB terminal switch-on delay	0.000-50.000s	0.000s
P05.23	HDIB terminal switch-off delay	0.000-50.000s	0.000s
P07.39	Input terminal state of present fault	1	0
P17.12	Digital input terminal state	al input terminal state /	

5.8.12 Digital output

MSI350 series inverter carries two groups of relay output terminals, one open collector Y output terminal and one high-speed pulse output (HDO) terminal. The function of all the digital output terminals can be programmed by function codes, of which the high-speed pulse output terminal HDO can also be set to high-speed pulse output or digital output by function code.

The table below lists the options for the above four function parameters, and users are allowed to select the same output terminal functions repetitively.

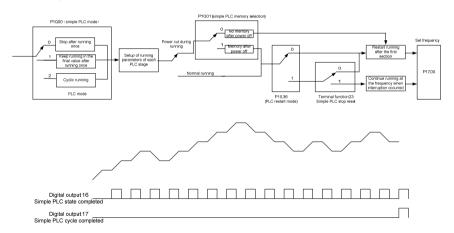
Set value	Function	Description
0	Invalid	Output terminal has no function
1	In running	Output ON signal when there is frequency output during running
2	In forward running	Output ON signal when there is frequency output during forward running
3	In reverse running	Output ON signal when there is frequency output during reverse running
4	In jogging	Output ON signal when there is frequency output during jogging

Set value	Function	Description
5	Inverter fault	Output ON signal when inverter fault occurred
6	Frequency level detection FDT1	Refer to P08.32 and P08.33
7	Frequency level detection FDT2	Refer to P08.34 and P08.35
8	Frequency reached	Refer to P08.36
9	Running in zero speed	Output ON signal when the inverter output frequency and reference frequency are both zero.
10	Reach upper limit frequency	Output ON signal when the running frequency reaches upper limit frequency
11	Reach lower limit frequency	Output ON signal when the running frequency reached lower limit frequency
12	Ready to run	Main circuit and control circuit powers are established, the protection functions do not act; when the inverter is ready to run, output ON signal.
13	In pre-exciting	Output ON signal during pre-exciting of the inverter
14	Overload pre-alarm	Output ON signal after the pre-alarm time elapsed based on the pre-alarm threshold; see P11.08–P11.10 for details.
15	Underload pre-alarm	Output ON signal after the pre-alarm time elapsed based on the pre-alarm threshold; see P11.11–P11.12 for details.
16	Simple PLC state completed	Output signal when current stage of simple PLC is completed
17	Simple PLC cycle completed	Output signal when a single cycle of simple PLC operation is completed
23	Virtual terminal output of MODBUS communication	Output corresponding signal based on the set value of MODBUS; output ON signal when it is set to 1, output OFF signal when it is set to 0
24	Virtual terminal output of POROFIBUS\CANopen communication	Output corresponding signal based on the set value of PROFIBUS\CANopen; output ON signal when it is set to 1, output OFF signal when it is set to 0
25	Virtual terminal output of Ethernet communication	Output corresponding signal based on the set value of Ethernet; output ON signal when it is set to 1, output OFF signal when it is set to 0.
26	DC bus voltage established	Output is valid when the bus voltage is above the undervoltage threshold of the inverter
27	Z pulse output	Output is valid when the encoder Z pulse is arrived, and is invalid after 10 ms.

Set	Function	Description
value		
28	During pulse superposition	Output is valid when the pulse superposition terminal input
		function is valid
29	STO action	Output when STO fault occurred
30	Positioning completed	Output is valid when position control positioning is completed
31	Spindle zeroing completed	Output is valid when spindle zeroing is completed
32	Spindle scale-division	Output is valid when spindle scale-division is completed
	completed	
33	In speed limit	Output is valid when the frequency is limited
34	Virtual terminal output of	The corresponding signal is output according to the set value
	EtherCat/Profinet	of Profinet communication. When it is set to 1, the ON signal
	communication	is output, and when it is set to 0, the OFF signal is output.
35	Reserved	
36	Speed/position control	Output is valid when the mode switch-over is completed
	switch-over completed	
37–40	Reserved	
41	C_Y1	C_Y1 from PLC (You need to set P27.00 to 1.)
42	C_Y2	C_Y2 from PLC (You need to set P27.00 to 1.)
43	C_HDO	C_HDO from PLC (You need to set P27.00 to 1.)
44	C_R01	C_RO1 from PLC(You need to set P27.00 to 1.)
45	C_RO2	C_RO2 from PLC (You need to set P27.00 to 1.)
46	C_RO3	C_RO3 from PLC (You need to set P27.00 to 1.)
47	C_RO4	C_RO4 from PLC (You need to set P27.00 to 1.)
48–63	Reserved variables	1

Function code	Name	Detailed parameter description	Default value
P06.00	HDO output type	0: Open collector high-speed pulse output	0
		1: Open collector output	_
P06.01	Y output selection	0: Invalid	0
P06.02	HDO output selection	1: In running	0
P06.03	Relay RO1 output selection	In forward running In reverse running	1
	Scieduon	4: In jogging	
		5: Inverter fault	
		6: Frequency level detection FDT1	
		7: Frequency level detection FDT2	
		8: Frequency reached	
		9: Running in zero speed	
		10: Reach upper limit frequency	
		11: Reach lower limit frequency	
	Relay RO2 output selection	12: Ready to run	
		13: In pre-exciting	
		14: Overload pre-alarm	
		15: Underload pre-alarm	
		16: Simple PLC stage completed	
		17: Simple PLC cycle completed	
D00.04		18: Reach set counting value	_
P06.04		19: Reach designated counting value	5
		20: External fault is valid	
		21: Reserved	
		22: Reach running time	
		23: Virtual terminal output of MODBUS	
		communication	
		24: Virtual terminal output of	
		POROFIBUS/CANopen communication	
		25: Virtual terminal output of Ethernet	
		communication	
		26: DC bus voltage established	
		27: Z pulse output	
		28: During pulse superposition	
		29: STO action	
		30: Positioning completed	

Function	Name	Detailed parameter description	Default
code			value
		31: Spindle zeroing completed	
		32: Spindle scale-division completed	
		33: In speed limit 34: Virtual terminal output of EtherCat/Profinet	
		communication	
		35: Reserved	
		36: Speed/position control switch-over	
		completed	
		37–40: Reserved	
		41: C_Y1 from PLC (You need to set P27.00 to	
		1.)	
		42: C_Y2 from PLC (You need to set P27.00 to	
		1.)	
		43: C_HDO from PLC (You need to set P27.00	
		to 1.)	
		44: C_RO1 from PLC (You need to set P27.00	
		to 1.)	
		45: C_RO2 from PLC (You need to set P27.00	
		to 1.)	
		46: C_RO3 from PLC (You need to set P27.00 to 1.)	
		47: C_RO4 from PLC (You need to set P27.00	
		to 1.)	
		48–63: Reserved	
P06.05	Output terminal polarity selection	0x00-0x0F	0x00
P06.06	Y switch-on delay	0.000–50.000s	0.000s
P06.07	Y switch-off delay	0.000–50.000s	0.000s
P06.08	HDO switch-on delay	0.000–50.000s (valid only when P06.00=1)	0.000s
P06.09	HDO switch-off delay	0.000–50.000s (valid only when P06.00=1)	0.000s
P06.10	Relay RO1 switch-on delay	0.000-50.000s	0.000s
P06.11	Relay RO1 switch-off delay	0.000-50.000s	0.000s
P06.12	Relay RO2 switch-on delay	0.000–50.000s	0.000s
P06.13	Relay RO2 switch-off	0.000–50.000s	0.000s


Function code	Name	Detailed parameter description	Default value
	delay		
P07.40	Output terminal state of present fault	1	0
P17.13	Digital output terminal state	1	0

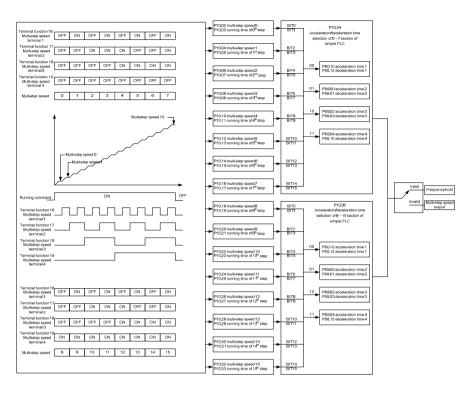
5.8.13 Simple PLC

Simple PLC is a multi-step speed generator, and the inverter can change the running frequency and direction automatically based on the running time to fulfill process requirements. Previously, such function was realized with external PLC, while now, the inverter itself can achieve this function.

MSI350 series inverter can realize 16-step speeds control, and provide four groups of acceleration/deceleration time for users to choose from.

After the set PLC completes one cycle (or one section), one ON signal can be output by the multifunction relay.

Function code	Name	Detailed parameter description	Default value
P10.00	Simple PLC mode	Stop after running once Keep running in the final value after running once Cyclic running	0
P10.01	Simple PLC memory selection	No memory after power down Memory after power down	0
P10.02	Multi-step speed 0	-100.0–100.0%	0.0%
P10.03	Running time of 0 th step	0.0–6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-100.0–100.0%	0.0%
P10.05	Running time of 1st step	0.0–6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-100.0–100.0%	0.0%
P10.07	Running time of 2 nd step	0.0–6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-100.0–100.0%	0.0%
P10.09	Running time of 3 rd step	0.0–6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-100.0–100.0%	0.0%
P10.11	Running time of 4th step	0.0–6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-100.0–100.0%	0.0%
P10.13	Running time of 5 th step	0.0–6553.5s (min)	0.0s
P10.14	Multi-step speed 6	-100.0–100.0%	0.0%
P10.15	Running time of 6 th step	0.0–6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-100.0–100.0%	0.0%
P10.17	Running time of 7 th step	0.0-6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-100.0–100.0%	0.0%
P10.19	Running time of 8 th step	0.0–6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-100.0–100.0%	0.0%
P10.21	Running time of 9th step	0.0-6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-100.0–100.0%	0.0%
P10.23	Running time of 10 th step	0.0-6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-100.0–100.0%	0.0%
P10.25	Running time of 11 th step	0.0-6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-100.0–100.0%	0.0%
P10.27	Running time of 12 th step	0.0-6553.5s (min)	0.0s

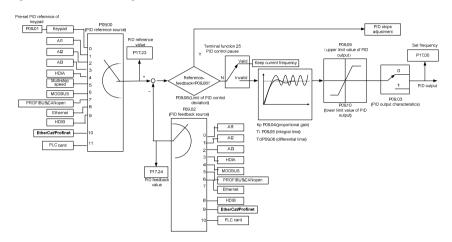


Function code	Name	Detailed parameter description	Default value
P10.28	Multi-step speed 13	-100.0–100.0%	0.0%
P10.29	Running time of 13 th step	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-100.0–100.0%	0.0%
P10.31	Running time of 14 th step	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-100.0–100.0%	0.0%
P10.33	Running time of 15 th step	0.0–6553.5s (min)	0.0s
P10.36	PLC restart mode	Restart from the first section Continue running at the frequency when interruption occurred	0
P10.34	Acceleration/deceleration time of 0–7 stage of simple PLC	0x0000-0XFFFF	0000
P10.35	Acceleration/deceleration time of 8–15 stage of simple PLC	0x0000-0XFFFF	0000
P05.01– P05.09	Digital input function	23: Simple PLC stop reset 24: Simple PLC pause 25: PID control pause	
P06.01- P06.04	Digital output function	16: Simple PLC stage reached 17: Simple PLC cycle reached	
P17.00	Set frequency	0.00Hz-P00.03 (Max. output frequency)	0.00Hz
P17.27	Simple PLC and current stage number of multi-step speed	0–15	0

5.8.14 Multi-step speed running

Set the parameters used in multi-step speed running. MSI350 inverter can set 16-step speeds, which are selectable by multi-step speed terminals 1–4, corresponding to multi-step speed 0 to multi-step speed 15.

Function code	Name	Detailed parameter description	Default value
P10.02	Multi-step speed 0	-100.0–100.0%	0.0%
P10.03	Running time of 0 th step	0.0–6553.5s (min)	0.0s
P10.04	Multi-step speed 1	-100.0–100.0%	0.0%
P10.05	Running time of 1st step	0.0-6553.5s (min)	0.0s
P10.06	Multi-step speed 2	-100.0–100.0%	0.0%
P10.07	Running time of 2 nd step	0.0-6553.5s (min)	0.0s
P10.08	Multi-step speed 3	-100.0–100.0%	0.0%
P10.09	Running time of 3 rd step	0.0-6553.5s (min)	0.0s
P10.10	Multi-step speed 4	-100.0–100.0%	0.0%
P10.11	Running time of 4th step	0.0–6553.5s (min)	0.0s
P10.12	Multi-step speed 5	-100.0–100.0%	0.0%
P10.13	Running time of 5 th step	0.0-6553.5s (min)	0.0s


Function		2	Default
code	Name	Detailed parameter description	value
P10.14	Multi-step speed 6	-100.0–100.0%	0.0%
P10.15	Running time of 6 th step	0.0-6553.5s (min)	0.0s
P10.16	Multi-step speed 7	-100.0–100.0%	0.0%
P10.17	Running time of 7 th step	0.0-6553.5s (min)	0.0s
P10.18	Multi-step speed 8	-100.0–100.0%	0.0%
P10.19	Running time of 8th step	0.0–6553.5s (min)	0.0s
P10.20	Multi-step speed 9	-100.0–100.0%	0.0%
P10.21	Running time of 9th step	0.0–6553.5s (min)	0.0s
P10.22	Multi-step speed 10	-100.0–100.0%	0.0%
P10.23	Running time of 10 th step	0.0–6553.5s (min)	0.0s
P10.24	Multi-step speed 11	-100.0–100.0%	0.0%
P10.25	Running time of 11 th step	0.0–6553.5s (min)	0.0s
P10.26	Multi-step speed 12	-100.0–100.0%	0.0%
P10.27	Running time of 12 th step	0.0–6553.5s (min)	0.0s
P10.28	Multi-step speed 13	-100.0–100.0%	0.0%
P10.29	Running time of 13 th step	0.0–6553.5s (min)	0.0s
P10.30	Multi-step speed 14	-100.0–100.0%	0.0%
P10.31	Running time of 14th step	0.0–6553.5s (min)	0.0s
P10.32	Multi-step speed 15	-100.0–100.0%	0.0%
P10.33	Running time of 15 th step	0.0–6553.5s (min)	0.0s
P10.34	Acceleration/decoration time selection of 0–7 section of simple PLC	0x0000-0XFFFF	0000
P10.35	Acceleration/decoration time selection of 8–15 section of simple PLC	0x0000-0XFFFF	0000
P05.01– P05.09	Digital input function selection	16: Multi-step speed terminal 1 17: Multi-step speed terminal 2 18: Multi-step speed terminal 3 19: Multi-step speed terminal 4 20: Multi-step speed pause	1
P17.27	Simple PLC and current steps of multi-step speed	0–15	0

5.8.15 PID control

PID control, a common mode for process control, is mainly used to adjust the inverter output frequency

or output voltage through performing scale-division, integral and differential operations on the difference between feedback signal of controlled variables and signal of the target, thus forming a negative feedback system to keep the controlled variables above the target. It is suitable for flow control, pressure control, temperature control, etc. Diagram of basic principles for output frequency regulation is shown in the figure below.

Introduction to the working principles and control methods for PID control

Proportional control (Kp): When the feedback deviates from the reference, the output will be proportional to the deviation, if such deviation is constant, the regulating variable will also be constant. Proportional control can respond to feedback changes rapidly, however, it cannot eliminate the error by itself. The larger the proportional gain, the faster the regulating speed, but too large gain will result in oscillation. To solve this problem, first, set the integral time to a large value and the derivative time to 0, and run the system by proportional control, and then change the reference to observe the deviation between feedback signal and the reference (static difference), if the static difference is (eg, increase the reference, and the feedback variable is always less than the reference after system stabilizes), continue increasing the proportional gain, otherwise, decrease the proportional gain; repeat such process until the static error becomes small.

Integral time (Ti): When feedback deviates from reference, the output regulating variable accumulates continuously, if the deviation persists, the regulating variable will increase continuously until deviation disappears. Integral regulator can be used to eliminate static difference; however, too large regulation may lead to repetitive overshoot, which will cause system instability and oscillation. The feature of oscillation caused by strong integral effect is that the feedback signal fluctuates up and down based on the reference variable, and fluctuation range increases gradually until oscillation occurred. Integral time parameter is generally regulated gradually from large to small until the stabilized system speed fulfills the requirement.

Derivative time (Td): When the deviation between feedback and reference changes, output the regulating variable which is proportional to the deviation variation rate, and this regulating variable is only related to the direction and magnitude of the deviation variation rather than the direction and magnitude of the deviation itself. Differential control is used to control the feedback signal variation based on the variation trend. Differential regulator should be used with caution as it may easily enlarge the system interferences, especially those with high variation frequency.

When frequency command selection (P00.06, P00. 07) is 7, or channel of voltage setup (P04.27) is 6, the running mode of inverter is process PID control.

5.8.15.1 General procedures for PID parameter setup

a. Determining proportional gain P

When determining proportional gain P, first, remove the integral term and derivative term of PID by making Ti=0 and Td=0 (see PID parameter setup for details), thus turning PID into pure proportional control. Set the input to 60%–70% of the max. allowable value, and increase proportional gain P gradually from 0 until system oscillation occurred, and then in turn, decrease proportional gain P gradually from current value until system oscillation disappears, record the proportional gain P at this point and set the proportional gain P of PID to 60%–70% of current value. This is whole commissioning process of proportional gain P.

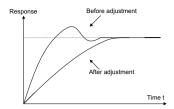
b. Determine integral time Ti

After proportional gain P is determined, set the initial value of a larger integral time Ti, and decrease Ti gradually until system oscillation occurred, and then in turn, increase Ti until system oscillation disappears, record the Ti at this point, and set the integral time constant Ti of PID to 150%–180% of current value. This is the commissioning process of integral time constant Ti.

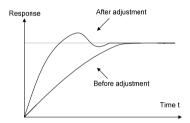
c. Determining derivative time Td

The derivative time Td is generally set to 0.

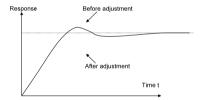
If users need to set Td to another value, set in the same way with P and Ti, namely set Td to 30% of the value when there is no oscillation.

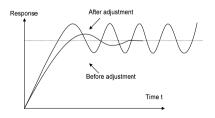

d. Empty system load, perform load-carrying joint debugging, and then fine-tune PID parameter until fulfilling the requirement.

5.8.15.2 How to fine-tune PID


After setting the parameters controlled by PID, users can fine-tune these parameters by the following means.

Control overmodulation: When overmodulation occurred, shorten the derivative time (Td) and prolong integral time (Ti).

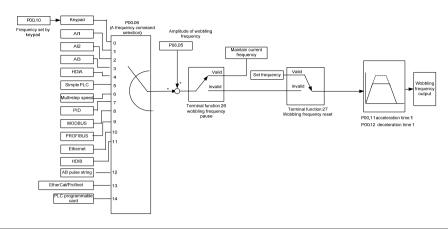



Stabilize the feedback value as fast as possible: when overmodulation occurred, shorten integral time (Ti) and prolong derivative time (Td) to stabilize control as fast as possible.

Control long-term vibration: If the cycle of periodic vibration is longer than the set value of integral time (Ti), it indicates the integral action is too strong, prolong the integral time (Ti) to control vibration.

Control short-term vibration: If the vibration cycle is short is almost the same with the set value of derivative time (Td), it indicates derivative action is too strong, shorten the derivative time (Td) to control vibration. When derivative time (Td) is set to 0.00 (namely no derivative control), and there is no way to control vibration, decrease the proportional gain.

Function	Name	Detailed parameter description	Default
code	1.4	·	value
		0: Keypad (P09.01)	
		1: Al1	
		2: Al2	
		3: AI3	
		4: High-speed pulse HDIA 5: Multi-step	
		6: MODBUS communication	
P09.00	PID reference source	7: PROFIBUS/CANopen/DeviceNet	0
		communication	
		8: Ethernet communication	
		9: High-speed pulse HDIB	
		10: EtherCat/Profinet communication	
		11: Programmable extension card	
		12: Reserved	
P09.01	Pre-set PID reference of	-100.0%—100.0%	0.0%
	keypad		
	PID feedback source	0: Al1	
		1: AI2	
		2: AI3	
		High-speed pulse HDIA MODBUS communication	
		5: PROFIBUS/CANopen/DeviceNet	
P09.02		communication	0
		6: Ethernet communication	
		7: High-speed pulse HDIB	
		8: EtherCat/Profinet communication	
		9: Programmable extension card	
		10: Reserved	
P09.03	PID output characteristics	0: PID output is positive characteristic	0
F 03.03	output Glaracteristics	1: PID output is negative characteristic	0
P09.04	Proportional gain (Kp)	0.00-100.00	1.80
P09.05	Integral time (Ti)	0.01-10.00s	0.90s
P09.06	Derivative time (Td)	0.00-10.00s	0.00s
P09.07	Sampling cycle (T)	0.000-10.000s	0.100s
P09.08	Limit of PID control deviation	0.0–100.0%	0.0%
P09.09	Upper limit value of PID	P09.10-100.0% (max. frequency or	100.0%



Function code	Name	Detailed parameter description	Default value
	output	voltage)	
P09.10	Lower limit value of PID output	-100.0%–P09.09 (max. frequency or voltage)	0.0%
P09.11	Feedback offline detection value	0.0–100.0%	0.0%
P09.12	Feedback offline detection time	0.0–3600.0s	1.0s
P09.13	PID control selection	0x0000–0x1111 Ones: 0: Continue integral control after the frequency reaches upper/lower limit 1: Stop integral control after the frequency reaches upper/lower limit Tens: 0: The same with the main reference direction 1: Contrary to the main reference direction Hundreds: 0: Limit as per the max. frequency 1: Limit as per A frequency Thousands: 0: A+B frequency, acceleration /deceleration of main reference A frequency source buffering is invalid 1: A+B frequency, acceleration/ deceleration of main reference A frequency source buffering is valid, acceleration/deceleration is determined by P08.04 (acceleration time 4).	0x0001
P17.00	Set frequency	0.00Hz-P00.03 (Max. output frequency)	0.00Hz
P17.23	PID reference value	-100.0–100.0%	0.0%
P17.24	PID feedback value	-100.0–100.0%	0.0%

5.8.16 Run at wobbling frequency

Wobbling frequency is mainly applied in cases where transverse movement and winding functions are needed like textile and chemical fiber industries. The typical working process is shown as below.

Function code	Name	Detailed parameter description	Default value
P00.03	Max. output frequency	P00.03–400.00Hz	50.00Hz
P00.06	A frequency command selection	0: Set via keypad 1: Set via Al1 2: Set via Al2 3: Set via Al3 4: Set via high speed pulse HDIA 5: Set via simple PLC program 6: Set via multi-step speed running 7: Set via PID control 8: Set via MODBUS communication 9: Set via PROFIBUS / CANopen / DeviceNet communication 10: Set via Ethernet communication 11: Set via high speed pulse HDIB 12: Set via pulse string AB 13: Set via EtherCat/Profinet communication 14: Set via PLC card	0
P00.11	Acceleration time 1	0.0–3600.0s	Depend on model
P00.12	Deceleration time 1	0.0–3600.0s	Depend on model
P05.01– P05.09	Digital input function selection	26: Wobbling frequency pause (stop at current frequency)	1

Function code	Name	Detailed parameter description	Default value
		27: Wobbling frequency reset (revert to center frequency)	
P08.15	Amplitude of wobbling frequency	0.0–100.0% (relative to set frequency)	0.0%
P08.16	Amplitude of jump frequency	0.0–50.0% (relative to amplitude of wobbling frequency)	0.0%
P08.17	Wobbling frequency rise time	0.1–3600.0s	5.0s
P08.18	Wobbling frequency fall time	0.1–3600.0s	5.0s

5.8.17 Local encoder input

MSI350 series inverter supports pulse count function by inputting the count pulse from HDI high-speed pulse port. When the actual count value is no less than the set value, digital output terminal will output count-value-reached pulse signal, and the corresponding count value will be zeroed out.

Function code	Name	Detailed parameter description	Default value
		0x00-0x11	
		Ones: HDIA input type	
		0: HDIA is high-speed pulse input	
P05.00	HDI input type	1: HDIA is digital input	0x00
		Tens: HDIB input type	
		0: HDIB is high-speed pulse input	
		1: HDIB is digital input	
		0: Set input via frequency	
P05.38	HDIA high-speed pulse input	1: Reserved	0
1 00.00	function	2: Input via encoder, used in combination	O
		with HDIB	
		0: Set input via frequency	
P05 44	HDIB high-speed pulse input	1: Reserved	0
P05.44	function selection	2: Input via encoder, used in combination	U
		with HDIA	
P20.15		0: PG card	
	Speed measurement mode	1: local; realized by HDIA and HDIB;	0
		supports incremental 24V encoder only	
P18.00	Actual frequency of encoder	-999.9–3276.7Hz	0.0Hz

5.8.18 Commissioning procedures for position control and spindle positioning function

1. Commissioning procedures for closed-loop vector control of asynchronous motor

Step 1: Restore to default value via keypad

Step 2: Set P00.03, P00.04 and P02 group motor nameplate parameters

Step 3: Motor parameter autotuning

Carry out rotary parameter autotuning or static parameter autotuning via keypad, if the motor can be disconnected from load, then it is users can carry out rotary parameter autotuning; otherwise, carry out static parameter autotuning, the parameter obtained from autotuning will be saved in P02 motor parameter group automatically.

Step 4: Verify whether the encoder is installed and set properly

a) Confirm the encoder direction and parameter setup

Set P20.01 (encoder pulse-per-revolution), set P00.00=2 and P00.10=20Hz, and run the inverter, at this point, the motor rotates at 20Hz, observe whether the speed measurement value of P18.00 is correct, if the value is negative, it indicates the encoder direction is reversed, under such situation, set P20.02 to 1; if the speed measurement value deviates greatly, it indicates P20.01 is set improperly. Observe whether P18.02 (encoder Z pulse count value) fluctuates, if yes, it indicates the encoder suffers interference or P20.01 is set improperly, requiring users to check the wiring and the shielding layer.

b) Determine Z pulse direction

Set P00.10=20Hz, and set P00.13 (running direction) to forward and reverse direction respectively to observe whether the difference value of P18.02 is less than 5, if the difference value remains to be larger than 5 after setting Z pulse reversal function of P20.02, power off and exchange phase A and phase B of the encoder, and then observe the difference between the value of P18.02 during forward and reverse rotation. Z pulse direction only affects the forward/reverse positioning precision of the spindle positioning carried out with Z pulse.

Step 5: Closed-loop vector pilot-run

Set P00.00=3, and carry out closed-loop vector control, adjust P00.10 and speed loop and current loop PI parameter in P03 group to make it run stably in the whole range.

Step 6: Flux-weakening control

Set flux-weakening regulator gain P03.26=0-8000, and observe the flux-weakening control effect. P03.22-P03.24 can be adjusted as needed.

2. Commissioning procedures for closed-loop vector control of synchronous motor

Step 1: Set P00.18=1, restore to default value

Step 2: Set P00.00=3 (VC), set P00.03, P00.04, and motor nameplate parameters in P02 group.

Step 3: Set P20.00 and P20.01 encoder parameters

When the encoder is resolver-type encoder, set the encoder pulse count value to (resolver pole pair number × 1024), eg, if pole pair number is 4, set P20.01 to 4096.

Step 4: Ensure the encoder is installed and set correctly

When motor stops, observe whether P18.21 (resolver angle) fluctuates, if it fluctuates sharply, check the wiring and grounding. Rotates the motor slowly, observe whether P18.21 changes accordingly. If yes, it indicates motor is connected correctly; if the value of P18.02 keeps constant at a non-zero value after rotating for multiple circles, it indicates encoder Z signal is correct.

Step 5: Autotuning of initial position of magnetic pole

Set P20.11=2 or 3 (3: rotary autotuning; 2: static autotuning), press RUN key to run the inverter

a) Rotary autotuning (P20.11 = 3)

Detect the position of current magnetic pole when autotuning starts, and then accelerates to 10Hz, autotuning corresponding magnetic pole position of encoder Z pulse, and decelerate to stop.

During running, if ENC1O or ENC1D fault occurred, set P20.02=1 and carry out autotuning again.

After autotuning is done, the angle obtained from autotuning will be saved in P20.09 and P20.10 automatically.

b) Static autotuning

In cases where the load can be disconnected, it is recommended to adopt rotary autotuning (P20.11=3) as it has high angle precision. If the load cannot be disconnected, users can adopt static autotuning (P20.11=2). The magnetic pole position obtained from autotuning will be saved in P20.09 and P20.10.

Step 6: Closed-loop vector pilot-run

Adjust P00.10 and speed loop and current loop PI parameter in P03 group to make it run stably in the whole range. If oscillation occurred, reduce the value of P03.00, P03.03, P03.09 and P03.10. If current oscillation noise occurred during low speed, adjust P20.05.

Note: It is necessary to re-determine P20.02 (encoder direction) and carry out magnetic pole position autotuning again if the wiring of motor or encoder is changed.

3. Commissioning procedures for pulse string control

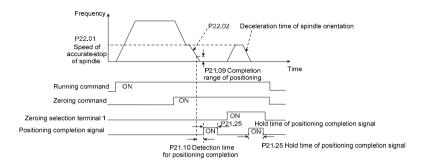
Pulse input is operated based on closed-loop vector control; speed detection is needed in the subsequent spindle positioning, zeroing operation and division operation.

- Step 1: Restore to default value by keypad
- Step 2: Set P00.03, P00.04 and motor nameplate parameters in P02 group
- Step 3: Motor parameter autotuning: rotary parameter autotuning or static parameter autotuning
- Step 4: Verity the installation and settings of encoder. Set P00.00=3 and P00.10=20Hz to run the system, and check the control effect and performance of the system.
- Step 5: Set P21.00=0001 to set positioning mode to position control, namely pulse-string control. There are four kinds of pulse command modes, which can be set by P21.01 (pulse command mode).

Under position control mode, users can check high bit and low bit of position reference and feedback, P18.02 (count value of Z pulse), P18.00 (actual frequency of encoder), P18.17 (pulse command frequency) and P18.19 (position regulator output) via P18, through which users can figure out the relation between P18.8 (position of position reference point) and P18.02, pulse command frequency P18.17, feedforward P18.18 and position regulator output P18.19.

Step 6: The position regulator has two gains, namely P21.02 and P21.03, and they can be switched by speed command, torque command and terminals.

Step 7: When P21.08 (output limit of position controller) is set to 0, the position control will be invalid, and at this point, the pulse string acts as frequency source, P21.13 (position feedforward gain) should be set to 100%, and the speed acceleration/deceleration time is determined by the acceleration /deceleration time of pulse string, the pulse string acceleration/deceleration time of the system can be adjusted. If the pulse string acts as the frequency source in speed control, users can also set P21.00 to 0000, and set the frequency source reference P00.06 or P00.07 to 12 (set by pulse string AB), at this point, the acceleration/deceleration time is determined by the acceleration/deceleration time of the inverter, meanwhile, the parameters of pulse string AB is still set by P21 group. In speed mode, the filter time of pulse string AB is determined by P21.29.


Step 8: The input frequency of pulse string is the same with the feedback frequency of encoder pulse, the relation between them can be changed by altering P21.11 (numerator of position command ratio) and P21.12 (denominator of position command ratio)

Step 9: When running command or servo enabling is valid (by setting P21.00 or terminal function 63), it will enter pulse string servo running mode.

4. Commissioning procedures for spindle positioning

Spindle orientation is to realize orientation functions like zeroing and division based on closed-loop vector control

Step 1–4: These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control, thus realizing spindle positioning function in either position control or speed control mode.

Step 5: Set P22.00.bit0=1 to enable spindle positioning, set P22.00.bit1 to select spindle zero input. If the system adopts encoder for speed measurement, set P22.00.bit1 to 0 to select Z pulse input; if the system adopts photoelectric switch for speed measurement, set P22.00.bit1 to 1 to select photoelectric switch as zero input; set P22.00.bit2 to select zero search mode, set P22.00.bit3 to enable or disable zero calibration, and select zero calibration mode by setting P22.00.bit7.

Step 6: Spindle zeroing operation

- a) Select the positioning direction by setting P22.00.bit4;
- b) There are four zero positions in P22 group, users can choose one out of four zeroing positions by setting zeroing input terminal selection (46, 47) in P05 group. When executing zeroing function, the motor will stop accurately at corresponding zeroing position according to the set positioning direction, which can be viewed via P18.10;
- c) The positioning length of spindle zeroing is determined by the deceleration time of accuratestop and the speed of accurate-stop;

Step 7: Spindle division operation

There are seven scale-division positions in P22 group, users can choose one out of seven scale-division positions by setting scale-division input terminal selection (48, 49, 50) in P05 group. Enable corresponding scale-division terminal after the motor stops accurately, and the motor will check the scale-division position state and switch to corresponding position incrementally, at this point, users can check P18.09.

Step 8: Priority level of speed control, position control and zeroing

The priority level of speed running is higher than that of the scale division, when the system runs in scale-division mode, if spindle orientation is prohibited, the motor will turn to speed mode or position

mode.

The priority level of zeroing is higher than that of the scale division.

Scale-division command is valid when the scale-division terminal is from 000 state to non-000 state, eg, in 000–011, the spindle executes scale division 3. The transition time during terminal switch-over needs to be less than 10ms; otherwise, wrong scale division command may be executed.

Step 9: Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. In order to keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

Step 10: Positioning command selection (bit6 of P22.00)

Electric level signal: Positioning command (zeroing and scale division) can be executed only when there is running command or the servo is enabled.

Step 11: Spindle reference point selection (bit0 of P22.00)

Encoder Z pulse positioning supports the following spindle positioning modes:

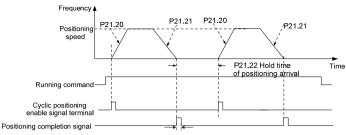
- a) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 rigid connection;
- b) the encoder is installed on the motor shaft, the motor shaft and spindle is 1:1 belt connection;

At this point, the belt may slip during high-speed running and cause inaccurate positioning, it is recommended to install proximity switch on the spindle.

c) The encoder is installed on the spindle, and the motor shaft is connected to the spindle with belt, the drive ratio is not necessarily 1:1;

At this point, set P20.06 (speed ratio of the mounting shaft between motor and encoder), and set P22.14 (spindle drive ratio) to 1. As the encoder is not installed on the motor, the control performance of closed-loop vector will be affected.

Proximity switch positioning supports the following spindle positioning modes:


a) The encoder is installed on the motor shaft, the drive ratio between motor shaft and spindle is not necessarily 1:1;

At this point, it is required to set P22.14 (spindle drive ratio).

5. Commissioning procedures for digital positioning

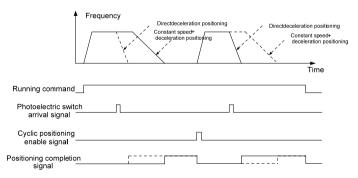
The diagram for digital positioning is shown below.

P21.25 Hold time of positioning completion signal

Step 1–4: These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

Step 5: Set P21.00=0011 to enable digital positioning. Set P21.17, P21.11 and P21.12 (set positioning displacement) according to actual needs; set P21.18 and P21.19 (set positioning speed); set P21.20 and P21.21 (set acceleration/deceleration time of positioning).

Step 6: Single positioning operation


Set P21.16.bit1=0, and the motor will carry out single positioning action and stay in the positioning position according to the setup in step 5.

Step 7: Cyclic positioning operation

Set P21.16.bit1=1 to enable cyclic positioning. The cyclic positioning is divided into continuous mode and repetitive mode; users can also carry out cyclic positioning through terminal function (no. 55, enable digital positioning cycle)

6. Commissioning procedures for positioning of photoelectric switch

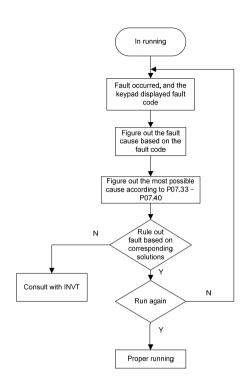
Photoelectric switch positioning is to realize positioning function based on closed-loop vector control.

Step 1–4: These four steps are the same with the first four steps of the commissioning procedures for closed-loop vector control, which aim to fulfill the control requirements of closed-loop vector control.

Step 5: Set P21.00=0021 to enable photoelectric switch positioning, the photoelectric switch signal can be connected to S8 terminal only, and set P05.08=43, meanwhile, set P21.17, P21.11 and P21.12 (set positioning displacement) based on actual needs; set P21.21 (deceleration time of positioning), however, when present running speed is too fast or the set positioning displacement is too small, the deceleration time of positioning will be invalid, and it will enter direct deceleration positioning mode.

Step 6: Cyclic positioning

After positioning is done, the motor will stay in current position. Users can set cyclic positioning through input terminal function selection (55: enable cyclic digital positioning) in P05 group; when the terminal receives cyclic positioning enable signal (pulse signal), the motor will continue running in the set speed as per the speed mode and re-enter positioning state after encountering photoelectric switch.


(7) Hold positioning

The position loop gain during positioning is P21.03; while the position loop gain in positioning-completion-hold state is P21.02. In order to keep sufficient position-hold force and ensure no system oscillation occurred, adjust P03.00, P03.01, P20.05 and P21.02.

5.8.19 Fault handling

MSI350 series inverter provides abundant information concerning fault handling for the convenience of the users.

Related parameter list:

Function code	Name	Detailed parameter description	Default value
P07.27	Type of present fault	0: No fault	0
P07.28	Type of the last fault	1: Inverter unit U phase protection (OUt1)	1
P07.29	Type of the last but one fault	2: Inverter unit V phase protection (OUt2)	/
P07.30	Type of the last but two fault	3: Inverter unit W phase protection (OUt3)	/
P07.31	Type of the last but three fault	4: Overcurrent during acceleration (OC1)	/
	71	5: Overcurrent during deceleration (OC2)	
		6: Overcurrent during constant speed	
		(OC3)	
		7: Overvoltage during acceleration (OV1)	
		8: Overvoltage during deceleration (OV2)	
		9: Overvoltage during constant speed	
		(OV3)	
		10: Bus undervoltage fault (UV)	
		11: Motor overload (OL1)	
		12: Inverter overload (OL2)	
		13: Phase loss on input side (SPI)	
		14: Phase loss on output side (SPO)	
		15: Rectifier module overheat (OH1)	
		16: Inverter module overheat (OH2)	
		17: External fault (EF)	
P07.32	Type of the last but four fault	18: 485 communication fault (CE)	
		19: Current detection fault (ItE)	
		20: Motor autotuning fault (tE)	
		21: EEPROM operation fault (EEP)	
		22: PID feedback offline fault (PIDE)	
		23: Brake unit fault (bCE)	
		24: Running time reached (END)	
		25: Electronic overload (OL3)	
		26: Keypad communication error (PCE)	
		27: Parameter upload error (UPE)	
		28: Parameter download error (DNE)	
		29: Profibus DP communication fault (E-	
		DP)	
		30: Ethernet communication fault (E-NET)	
		31: CANopen communication fault (E-	
		CAN)	

Function	N	Detailed a survey description	Default
code	Name	Detailed parameter description	value
		32: To-ground short-circuit fault 1 (ETH1)	
		33: To-ground short-circuit fault 2 (ETH2)	
		34: Speed deviation fault (dEu)	
		35: Mal-adjustment fault (STo)	
		36: Underload fault (LL)	
		37: Encoder offline fault (ENC10)	
		38: Encoder reversal fault (ENC1D)	
		39: Encoder Z pulse offline fault (ENC1Z)	
		40: Safe torque off (STO)	
		41: Channel H1 safety circuit exception	
		(STL1)	
		42: Channel H2 safety circuit exception	
		(STL2)	
		43: Channel H1 and H2 exception (STL3)	
		44: Safety code FLASH CRC check fault	
		(CrCE)	
		55: Repetitive extension card type fault (E-	
		Err)	
		56: Encoder UVW loss fault (ENCUV)	
		57: Profinet communication timeout fault	
		(E-PN)	
		58: CAN communication fault (SECAN)	
		59: Motor over-temperature fault (OT)	
		60: Card slot 1 card identification failure	
		(F1-Er)	
		61: Card slot 2 card identification failure	
		(F2-Er)	
		62: Card slot 3 card identification failure	
		(F3-Er)	
		63: Card slot 1 card communication	
		timeout fault (C1-Er)	
		64: Card slot 2 card communication	
		timeout fault (C2-Er)	
		65: Card slot 3 card communication	
		timeout fault (C3-Er)	
		66: EtherCat communication fault (E-CAT)	
		67: Bacnet communication fault (E-BAC)	
		68: DeviceNet communication fault (E-	

Function code	Name	Detailed parameter description	Default value
		DEV)	
		69: Master-slave synchronous CAN slave	
		fault (S-Err)	
P07.33	Running frequency of present	fault	0.00Hz
P07.34	Ramps reference frequency of	present fault	0.00Hz
P07.35	Output voltage of present fault		0V
P07.36	Output current of present fault		0.0A
P07.37	Bus voltage of present fault		0.0V
P07.38	Max. temperature of present fa	ault	0.0°C
P07.39	Input terminal state of present	fault	0
P07.40	Output terminal state of preser	nt fault	0
P07.41	Running frequency of the last t	fault	0.00Hz
P07.42	Ramps reference frequency of	the last fault	0.00Hz
P07.43	Output voltage of the last fault		0V
P07.44	Output current of the last fault		0.0A
P07.45	Bus voltage of the last fault		0.0V
P07.46	Max. temperature of the last fa	ult	0.0°C
P07.47	Input terminal state of the last	fault	0
P07.48	Output terminal state of the las	st fault	0
P07.49	Running frequency of the last I	out one fault	0.00Hz
P07.50	Ramps reference frequency of	the last but one fault	0.00Hz
P07.51	Output voltage of the last but of	one fault	0V
P07.52	Output current of the last but o	ne fault	0.0A
P07.53	Bus voltage of the last but one	fault	0.0V
P07.54	Max. temperature of the last but one fault		
P07.55	Input terminal state of the last	but one fault	0
P07.56	Output terminal state of the las	st but one fault	0

6. Function parameter list

6.1 What this chapter contains

This chapter lists all the function codes and corresponding description of each function code.

6.2 Function parameter list

Function parameters of MSI350 series inverter are categorized according to functions. Among the function groups, P98 is analog input/output calibration group, and P99 is factory function group which cannot be accessed by users. The function code adopts three-level menu, eg, "P08.08" indicates it is the no. 8 function code in P8 group.

The function group no. corresponds to the first-level menu; function code no. corresponds to the second-level menu; function code parameter corresponds to the third-level menu.

1. The function list is divided into the following columns.

Column 1 "Function code": number of the function parameter group and the parameter;

Colum 2 "Name": complete name of the function parameter;

Colum 3 "Detailed parameter description": detailed description of this function parameter;

Colum 4 "Default value": The original set value of the function parameter by default;

Colum 5: "Modify": The modification attribute of the function parameter, namely whether the function parameter can be modified and the condition for modification, as shown below.

"O": the set value of this parameter can be modified when the inverter is in stop or running state;

"©": the set value of this parameter cannot be modified when the inverter is in running state;

"•": the parameter value is the measured value which cannot be modified.

(The inverter has assigned the modification attribute of each parameter automatically to avoid inadvertent modification by users.)

- "System of numeration for parameters" is decimal; if the parameter is presented in hexadecimal numbers, the data of each bit will be independent of each other during parameter edit, and the value range of partial bits can be 0–F in hexadecimal system.
- 3. "Default value" is value restored after parameter refresh during restoring to default value; however, the measured value or recorded value will not be refreshed.
- 4. In order to enhance parameter protection, the inverter provides password protection for the function codes. After setting user password (namely user password P07.00 is not zero), when users press PRG/ESC key to enter function code edit state, the system will first enter user password verification state which displays "0.0.0.0.0.", requiring operators to input the correct user password.

For factory parameters, besides user password, it is also required to input the correct factory password (users should not attempt to modify factory parameters as improper setup may easily lead to maloperation or damage the inverter). When password protection is unlocked, the user password can be modified at any time; user password is subject to the last input. User password can be cancelled by setting P07.00 to 0; if P01.00 is set to a non-zero value, the parameter will be protected by password. When modifying function parameters through serial communication, the function of user password also follows above rules.

Function code	Name	Detailed parameter description	Default value	Modi fy
P00 group	Basic functions	S		
		0:SVC 0 1:SVC 1		
P00.00	Speed control	2:SVPWM	2	0
	mode	3:VC Note: If 0, 1 or 3 is selected, it is required to carry out		
	Running	motor parameter autotuning first. 0: Keypad		
P00.01	command channel	Terminal Communication	0	0
P00.02	Communication running command channel	0: MODBUS 1: PROFIBUS/CANopen/Devicenet 2: Ethernet 3: EtherCat/Profinet 4: PLC programmable card 5: Wireless communication card Note: 1, 2, 3, 4 and 5 are extended functions which are applicable with corresponding cards.	0	0
P00.03	Max. output frequency	Used to set the maximum output frequency of the inverter. It is the basis of frequency setup and the acceleration/deceleration. Setting range: Max. (P00.04, 10.00) –630.00Hz	50.00Hz	0
P00.04	Upper limit of running frequency	The upper limit of running frequency is upper limit value of inverter output frequency. This value cannot be more than the maximum output frequency. When the set frequency is higher than the upper limit frequency, the inverter runs at the upper limit frequency. Setting range: P00.05–P00.03 (Max. output frequency)	50.00Hz	0
P00.05	Lower limit of running frequency	The lower limit of running frequency is the lower limit value of inverter output frequency.	0.00Hz	0

		When the set frequency is lower than the lower limit		
		frequency, the inverter runs at the lower limit frequency.		
		Note: Max. output frequency ≥ upper limit frequency		
		≥ lower limit frequency.		
		Setting range: 0.00Hz-P00.04 (upper limit of running		
		frequency)		
	A frequency	0: Set via keypad		
P00.06	command	1: Set via Al1	0	0
	selection	2: Set via Al2		
		3: Set via Al3		
		4: Set via high speed pulse HDIA		
		5: Set via simple PLC program		
		6: Set via multi-step speed running		
		7: Set via PID control		
		8: Set via MODBUS communication		
	B frequency	9: Set via PROFIBUS / CANopen / DeviceNet		
P00.07	command selection	communication	15	0
		10: Set via Ethernet communication		
		11: Set via high speed pulse HDIB		
		12: Set via pulse string AB		
		13: Set via EtherCat/Profinet communication		
		14: Set via PLC card		
		15: Reserved		
	Reference object			
P00.08	of B frequency	0: Max. output frequency	0	0
	command	1: A frequency command		
		0: A		
	0 1: "	1: B		
D00.00	Combination	2: (A+B)		
P00.09	mode of setting	3: (A-B)	0	0
	source	4: Max. (A, B)		
		5: Min. (A, B)		
		When A and B frequency commands are set by keypad,		
D00 10	Set frequency via	the value is the initial digital set value of the inverter	E0 6011	
P00.10	keypad	frequency.	50.00Hz	0
		Setting range: 0.00 Hz–P00.03 (Max. output frequency)		
Doc	Acceleration	Acceleration time is the time needed for accelerating	Depend	_
P00.11	time 1	from 0Hz to Max. output frequency (P00.03).	on model	0
	Deceleration	Deceleration time is the time needed from decelerating	Depend	_
P00.12	time 1	from Max. output frequency (P00.03) to 0Hz.	on model	0
		1		

	ı							1	
		MSI	350 ser	ies inverter	defines four	groups	of		
		acce	eleration	and decelera	ation time, w	hich can	be		
		sele	cted via	multi-function	digital input te	erminals (P05		
		grou	ıp). The	acceleration	deceleration	time of	the		
		inve	rter is the	first group by	default.				
		Sett	ing range	of P00.11 and	d P00.12: 0.0-	3600.0s			
		0: R	un in defa	ault direction					
P00.13	Running direction	1: R	un in reve	erse direction				0	0
		2: R	everse ru	ınning is prohi	bited				
			Carrier frequency	Electro magnetic noise	Noise and leakage current	Cooling level			
			1kHz	♦ High	♦ Low	♦ Low			
			10kHz						
			15kHz	▼ Low	▼ High	▼ High			
		The	relation	between the n	nodel and car	ier freaue	ncv		
			nown belo						
					Default v	alue of			
				Model	carri				
					freque	ency			
				1.5–11kW	8kH	z			
		380V	15–55kW	4kH	7		Depend		
	Carrier frequency		Above						
P00.14	setup		75kW	2kH	2kHz		on model	0	
	•			22–55kW	4kH	7			
			660V	Above		_			
				75kW	2kH	lz			
		Adv	antages	of high carrie	frequency a	e as follo	ws:		
			-	waveform, fe					
			ıll motor r						
				es of high carri	er frequency a	re as follo	ws:		
			•	ch consumpt	. ,				
		_	ŭ	ed output ca		•			
		1	•	e inverter ne		•			
		1	-	he leakage c					
1				electromagnet			the		
			oundings	•					
		1						1	1

		frequency will cause unstable operation at low frequency, decrease the torque, or even lead to oscillation. The carrier frequency of inverter is set properly by default, and it should not be changed by users at will. If the default carrier frequency is exceeded during use, derating is required, derate by 10% for every additional 1k carrier frequency. Setting range: 1.2–15.0kHz		
P00.15		0: No operation 1: Rotary autotuning; carry out comprehensive motor parameter autotuning; rotary autotuning is used in cases where high control precision is required; 2: Static autotuning 1 (comprehensive autotuning); static autotuning 1 is used in cases where the motor cannot be disconnected from load; 3: Static autotuning 2 (partial autotuning); when current motor is motor 1, only P02.06, P02.07 and P02.08 will be autotuned; when current motor is motor 2, only P12.06, P12.07 and P12.08 will be autotuned.	0	0
P00.16	AVR function	O: Invalid 1: Valid during the whole process Automatic voltage regulation function is used to eliminate the impact on the output voltage of inverter when bus voltage fluctuates.	1	0
P00.17	Reserved	Reserved		
P00.18		O: No operation 1: Restore to default value 2: Clear fault history Note: After the selected function operations are done, this function code will be restored to 0 automatically. Restoration to default value will clear the user	0	0

		password, this function should be used with caution.		
D04		· · · · ·		
P01 grou	p Start/stop cont			ı
P01.00	Running mode of start	Direct start Start after DC brake Start after speed-tracking 1 Start after speed-tracking 2	0	0
P01.01	Starting frequency of direct start	Starting frequency of direct startup is the initial frequency when the inverter starts. See P01.02 (hold time of starting frequency) for details. Setting range: 0.00–50.00Hz	0.50Hz	0
P01.02	Hold time of starting frequency	A proper starting frequency can increase the torque during startup. Within the hold time of starting frequency, the output frequency of inverter is the starting frequency, and then it runs from the starting frequency to the target frequency, if the target frequency (frequency command) is below the starting frequency, the inverter will be standby rather than running. The starting frequency value is unlimited by the lower limit frequency. Setting range: 0.0–50.0s	0.0s	0
P01.03	DC brake current before start		0.0%	0
P01.04	DC brake time before start	then it will accelerate after the set DC brake time before startup elapses. If the set DC brake time is 0, DC brake will be invalid. The larger the DC brake current, the stronger the brake force. The DC brake current before startup refers to the percentage relative to rated inverter current. Setting range of P01.03: 0.0–100.0% Setting range of P01.04: 0.00–50.00s	0.00s	0
P01.05	Acceleration/decel eration mode	This function code is used to select the frequency variation mode during starting and running. 0: Straight line; the output frequency increases or	0	0

				<u> </u>
		decreases in straight line;		
		Output frequency f		
		fmax Time t		
		1: S curve; the output frequency increases or		
		decreases in S curve;		
		S curve is generally used in cases where smooth		
		start/stop is required, eg, elevator, conveyer belt, etc.		
		↑ Output frequency f		
		fmax Time t		
		Note: When set to 1, it is required to set P01.06,		
		P01.07, P01.27 and P01.28 accordingly.		
	Time of starting	The curvature of S curve is determined by acceleration		
P01.06	section of	range and acceleration and deceleration time.	0.1s	0
	acceleration S	Output frequency f	****	
P01.07	Time of ending section of acceleration S curve	t1=P01.06 (2=P01.07 (3=P01.27 (3=P01.27 (4=P01.28 (4=P01.28	0.1s	0
		0: Decelerate to stop; after stop command is valid, the		
P01.08	Stop mode	inverter lowers output frequency based on the deceleration mode and the defined deceleration time, after the frequency drops to the stop speed (P01.15), the inverter stops. 1: Coast to stop; after stop command is valid, the inverter stops output immediately, and the load coasts	0	0
		to stop as per mechanical inertia.		
	Starting frequency	Starting frequency of DC brake after stop; during		
P01.09	of DC brake after	decelerating to stop, when this frequency is reached,	0.00Hz	0
	stop	DC brake will be performed after stop.		
P01.10	Waiting time of	Demagnetization time (waiting time of DC brake after	0.00s	0

	DC brake after	stop): Before the DC brake, the inverter will block		
	stop	output, and after the demagnetization time elapses,		
P01.11	DC brake current	·	0.0%	0
1 01.11	of stop	overcurrent fault caused by DC brake during high	0.070	Ŭ
P01.12	DC brake time of stop	speed. DC brake current after stop: it means the DC brake force applied, the larger the current, the stronger the DC brake effect. P01.09 P01.09 P01.09 Setting range of P01.09: 0.00Hz–P00.03 (Max. output frequency) Setting range of P01.11: 0.0–100.0% Setting range of P01.11: 0.0–100.0%	0.00s	0
P01.13	Deadzone time of forward/reverse rotation	Setting range of P01.12: 0.0–50.0s This function code refers to the transition time of the threshold set by P01.14 during setting forward/reverse rotation of the inverter, as shown below. Output frequency forward switch over after starting frequency Switch over after service of starting frequency frequency frequency frequency frequency frequency Switch over after service of frequency frequen	0.0s	0
	Forward/reverse	0: Switch over after zero frequency		
P01.14	rotation switch-	1: Switch over after starting frequency	0	0
	over mode	2: Switch over after passing stop speed and delay		
P01.15	Stop speed	0.00-100.00Hz	0.50Hz	0
P01.16	Stop speed detection mode	Set value of speed (the only detection mode valid in SVPWM mode) Detection value of speed	0	0
P01.17	Stop speed detection time	0.00-100.00s	0.50s	0
P01.18	Running	When the running command channel is controlled by	0	0

	mustastian -f	Annuain ala dha ayatana will dataat munain a ta		
	protection of	terminals, the system will detect running terminal state	Į ,	
	power-on terminal	automatically during power up.		
		0: Terminal running command is invalid during power		
		up. The inverter will not run during power up even if		
		the running command terminal is detected to be valid,		
		and the system is in running protection state. The	Į ,	
		inverter will run only after this terminal is cancelled and		
		enabled again.		
		1: Terminal running command is valid during power up.		
		The system will start the inverter automatically after		
		initialization is done if the running command terminal is	Į ,	
		detected to be valid during power up.		
		Note: This function must be set with caution,	Į ,	
		otherwise, serious consequences may occur.		
		This function code is used to set the running state of	Į ,	
		inverter when the set frequency is below lower limit	Į ,	
	Action selection when the running frequency is below lower limit	frequency.	Į ,	
		0: Run in lower limit of the frequency		
		1: Stop	Į ,	
P01.19		2: Sleep	0	0
		When the set frequency is below lower limit frequency,	Į ,	
	(lower limit should	the inverter coasts to stop; when the set frequency is		
	be larger than 0)	above lower limit again and continues to be so after	Į ,	
		the time set by P01.20 elapses, the inverter will be	Į ,	
		restored to running state automatically.	Į ,	
		This function code is used to set the sleep delay.		
		When the running frequency of inverter is below the	Į ,	
		lower limit frequency, the inverter enters sleep state;	Į ,	
		when the set frequency is above the lower limit again	Į ,	
		and continues to be so after the time set by P01.20	Į ,	
		elapses, the inverter will run automatically.		
P01.20	Wake-up-from-	Output frequency f	0.0s	0
	sleep delay	t1 <t2, does="" inverter="" not="" run<br="" the="">t1+t2=t3, the inverter runs</t2,>	Į ,	
		t3=P01.20		
			Į ,	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Į ,	
		Run Sleep Run	Į ,	
		Setting range: 0.0–3600.0s (valid when P.01.19 is 2)		
D04.04	Restart after	This function code sets the automatic running of the		
P01.21	power cut	inverter at next power-on after power down.	0	0

		0.0: 11.1		
		0: Disabled restart		
		1: Enable restart, namely the inverter will run		
		automatically after the time set by P01.22 elapses if		
		the starting conditions are met.		
		This function code sets the waiting time before		
		automatically running at next power-on after power		
		down.		
	Waiting time of	Output frequency t1=P01.22 t2=P01.23		
P01.22	restart after power		1.0s	0
	cut			
		t		
		Running Power off Power on		
		Setting range: 0.0–3600.0s (valid when P01.21 is 1)		
		This function code sets the delay of the inverter's		
D04.00	Ot-ot deless	wake-up-from-sleep after running command is given,	0.0-	
P01.23	Start delay	the inverter will start to run and output after the time	0.0s	0
		set by P01.23 elapses to realize brake release.		
		Setting range: 0.0–600.0s		_
P01.24	Stop speed delay	0.0–600.0s	0.0s	0
	Open-loop 0Hz	0: No voltage output		
P01.25	output selection	1: With voltage output	0	0
		2: Output as per DC brake current of stop		
	Deceleration time			
P01.26	of emergency-	0.0–60.0s	2.0s	0
	stop			
	Time of starting			
P01.27	section of	0.0-50.0s	0.1s	0
	deceleration S	0.00	00	
	curve			
	Time of ending			
P01.28	section of	0.0–50.0s	0.1s	0
. 51.20	deceleration S		0.10	
	curve			
P01.29	Short-circuit brake	When the inverter starts in direct start mode	0.0%	0
. 01.20	current	(P01.00=0), set P01.30 to a non-zero value to enter	0.070	
1	Hold time of short-	short-circuit brake.		
P01.30	circuit brake at	During stop, if the running frequency of inverter is	0.00s	0
	startup	below the starting frequency of brake after stop, set		

	T		1	
P01.31	Hold time of short- circuit brake at stop	P01.31 to a non-zero value to enter short-circuit brake after stop, and then carry out DC brake in the time set by P01.12 (refer to P01.09–P01.12). Setting range of P01.29: 0.0–150.0% (inverter) Setting range of P01.30: 0.0–50.0s Setting range of P01.31: 0.0–50.0s	0.00s	0
P01.32- P01.34	Reserved variables	0–65535	0	•
P02 group	p Parameters of	motor 1		
P02.00	Type of motor 1	0: Asynchronous motor 1: Synchronous motor	0	0
P02.01	Rated power of asynchronous motor 1	0.1–3000.0kW	Depend on model	0
P02.02	Rated frequency of asynchronous motor 1	0.01Hz-P00.03 (Max. output frequency)	50.00Hz	0
P02.03	Rated speed of asynchronous motor 1	1–36000rpm	Depend on model	0
P02.04	Rated voltage of asynchronous motor 1	0–1200V	Depend on model	0
P02.05	Rated current of asynchronous motor 1	0.8–6000.0A	Depend on model	0
P02.06	Stator resistance of asynchronous motor 1	0.001–65.535Ω	Depend on model	0
P02.07	Rotor resistance of asynchronous motor 1	0.001–65.535Ω	Depend on model	0
P02.08	Leakage inductance of asynchronous motor 1	0.1–6553.5Mh	Depend on model	0
P02.09	Mutual inductance of asynchronous motor 1	0.1–6553.5Mh	Depend on model	0

No-load current of asynchronous motor 1 Nagnetic saturation coefficient 1 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 2 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 2 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 3 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 3 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 4 of iron core of asynchronous motor 1 Nagnetic saturation coefficient 4 of iron core of asynchronous motor 1 Number of pole ynchronous motor 1 Number of pole pairs of synchronous motor 1 Number of pole pairs of synch		No lood summer to t			
Magnetic saturation Coefficient 1 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 4 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coefficient 3 of iron core of asynchronous motor 1 Coef	D00.40			Depend	
Magnetic saturation coefficient 1 of iron core of asynchronous motor 1	P02.10	· ·	U. 1—0003.5A		U
Saturation coefficient 1 of iron core of asynchronous motor 1 P02.12					
P02.11		ŭ			
P02.11 iron core of asynchronous motor 1 Magnetic saturation coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 P02.15 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.19 P02					
iron core of asynchronous motor 1 Magnetic saturation coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 P02.15 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1	P02.11		0.0–100.0%	80.0%	0
P02.12 Magnetic saturation coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 P02.15 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.18 P02.18 P02.18 P02.18 P02.19 P02.1					
Magnetic saturation coefficient 2 of iron core of asynchronous motor 1 P02.13 P02.13 P02.14 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 P02.15 Rated power of synchronous motor 1 P02.16 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous only only only only only only only only					
Saturation coefficient 2 of iron core of asynchronous motor 1 P02.13 P02.13 P02.14 P02.14 P02.15 Rated power of synchronous motor 1 Rated frequency p02.16 P02.17 P02.18 Rated voltage of synchronous motor 1		motor 1			
P02.12 coefficient 2 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 O.0-100.0% 57.0% 57.0%		Magnetic			
P02.12 iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1 Depend on model		saturation			
iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1	P02 12	coefficient 2 of	0.0–100.0%	68.0%	\circ
motor 1 Magnetic saturation coefficient 3 of iron core of asynchronous motor 1 P02.14 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous one model on model o	1 02.12	iron core of	0.0 100.070	00.070	0
P02.13 Magnetic saturation Coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation Coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated frequency P02.15 Rated frequency of synchronous motor 1 Rated frequency P02.16 P02.17 Number of pole pairs of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.18 P02.18 P02.19		asynchronous			
Saturation coefficient 3 of iron core of asynchronous motor 1 P02.14 P02.14 P02.15 P02.15 Rated power of synchronous motor 1 Rated frequency P02.16 P02.16 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous 0–1200V Depend on model ©		motor 1			
P02.13 coefficient 3 of iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated frequency P02.16 P02.17 Number of pole pairs of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 P02.19 Rated voltage of synchronous model P02.10 P02.10 P02.11 P02.11 P02.11 P02.12 P02.12 P02.13 P02.14 P02.15 P0		Magnetic			
P02.13 iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 P02.14 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 P02.16 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous of synchronous motor 1 Rated voltage of synchronous motoel Depend on model Depend on mo		saturation			
iron core of asynchronous motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous motor 1	D02.12	coefficient 3 of	0.0.100.09/	E7 00/	
motor 1 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency P02.16 P02.17 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous on the pole pairs of synchronous motor 1 Rated voltage of synchronous on the pole pairs of synchronous on the pole pairs of synchronous motor 1 Rated power of asynchronous on the pole pairs of synchronous on the pole pai	P02.13	iron core of	0.0-100.0%	37.0%	O
P02.14 Magnetic saturation coefficient 4 of iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous only only only on model P02.18 Rated voltage of synchronous motor 1 Rated voltage of synchronous only only on model on		asynchronous			
P02.14 saturation coefficient 4 of iron core of asynchronous motor 1 P02.15 Rated power of synchronous motor 1 Rated frequency P02.16 of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous 0–1200V Depend on model on mo		motor 1			
P02.14 coefficient 4 of iron core of asynchronous motor 1 Rated power of synchronous motor 1 P02.15 Rated frequency P02.16 of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous one delivers are supported by the support of the synchronous one delivers are supported by the support of the synchronous one delivers are supported by the synchronous one delivers are supported		Magnetic			
P02.14 iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency of synchronous of synchronous motor 1 P02.16 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous of synchronous motor 1 Rated voltage of synchronous one motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous one motor 1		saturation			
iron core of asynchronous motor 1 Rated power of synchronous motor 1 Rated frequency P02.16 of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 P02.18 Depend on model	D00 44	coefficient 4 of	0.0.400.004	40.00/	
motor 1 Rated power of synchronous motor 1 P02.15 Rated frequency of synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 Rated voltage of synchronous one motor 1	P02.14	iron core of	0.0-100.0%	40.0%	O
P02.15 Rated power of synchronous motor 1		asynchronous			
P02.15 synchronous motor 1 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of P02.18 Synchronous motor 1 Rated voltage of synchronous motor 1 Rated voltage of synchronous motor 1 P02.18 Synchronous Depend on model ©		motor 1			
P02.15 synchronous motor 1		Rated power of			
P02.16 Rated frequency of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous P02.18 Rated voltage of synchronous P02.18 Depend on model	P02.15	synchronous	0.1–3000.0KW	•	0
P02.16 of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous p0-1200V Depend on model		motor 1		on model	
P02.16 of synchronous motor 1 Number of pole pairs of synchronous motor 1 P02.17 Rated voltage of synchronous p0-1200V Depend on model		Rated frequency			
motor 1 Number of pole pairs of synchronous motor 1 P02.18 Rated voltage of synchronous 0–1200V Depend on model on model	P02.16		0.01Hz–P00.03 (Max. output frequency)	50.00Hz	0
P02.17 Number of pole pairs of synchronous motor 1 Rated voltage of synchronous 0–1200V Depend on model on model					
P02.17 pairs of synchronous motor 1 Rated voltage of synchronous 0–1200V Depend on model on model					
P02.17 synchronous motor 1 Rated voltage of synchronous 0–1200V Depend on model on model		•			
motor 1 Rated voltage of synchronous 0–1200V Depend on model on model	P02.17	-	1–128	2	0
P02.18 Rated voltage of synchronous 0–1200V Depend on model		1 -			
P02.18 synchronous 0–1200V Depend on model					
on model	P02.18	_	0–1200V	•	0
		1 -		on model	

P02.19	Rated current of synchronous motor 1	0.8–6000.0A	Depend on model	0
P02.20	Stator resistance of synchronous motor 1	0.001–65.535Ω	Depend on model	0
P02.21	Direct-axis inductance of synchronous motor 1	0.01–655.35Mh	Depend on model	0
P02.22	Quadrature-axis inductance of synchronous motor 1	0.01–655.35Mh	Depend on model	0
P02.23	Counter-emf constant of synchronous motor 1	0–10000	300	0
P02.24	Reserved	0x0000-0xFFFF	0	•
P02.25	Reserved	0%-50% (rated motor current)	10%	•
P02.26	Overload protection of motor 1	O: No protection 1: Common motor (with low-speed compensation). As the cooling effect of common motor will be degraded in low speed, the corresponding electronic thermal protection value should also be adjusted properly, the low compensation here means to lower the overload protection threshold of the motor whose running frequency is below 30Hz. 2: Frequency-variable motor (without low speed compensation). As the cooling effect of frequency-variable motor is not affected by the rotating speed, there is no need to adjust the protection value during low speed running.	2	©
P02.27	Overload protection coefficient of motor 1	Motor overload multiples M=lout/(ln×K) In is rated motor current, lout is inverter output current, K is motor overload protection coefficient. The smaller the K, the larger the value of M, and the easier the protection. M=116%: protection will be applied when motor	100.0%	0

	I			
		overloads for 1h; M=200%: protection will be applied		
		when motor overloads for 60s; M>=400%: protection		
		will be applied immediately.		
		↑Time t		
		1m Motor overload multiple 116% 200%		
		Setting range: 20.0%–120.0%		
	Power display	This function adjusts the power display value of motor		
	calibration	1 only, and it does not affect the control performance of		
P02.28	coefficient of	the inverter.	1.00	0
	motor 1	Setting range: 0.00–3.00		
		0: Display as per motor type; under this mode, only		
		parameters related to current motor type will be		
P02.29	Parameter display	displayed.	0	0
	of motor 1	1: Display all; under this mode, all the motor parameters		
		will be displayed.		
P02.30	System inertia of motor 1	0–30.000kgm2	0	0
P02.31-	Reserved			
P02.32	variables	0–65535	0	0
P03 grou	p Vector control	of motor 1		
	Speed loop	Parameters of P03.00–P03.05 fit for vector control		
P03.00	proportional gain 1	mode only. Below P03.02, speed loop PI parameter is	20.0	0
	Speed loop	P03.00 and P03.01; above P03.06, speed loop PI		
P03.01	integral time 1	parameter is P03.03 and P03.04; in between, PI	0.200s	0
	Switch low point	parameter is obtained by linear variation between two		
P03.02	frequency	groups of parameters, as shown below.	5.00Hz	0
	Speed loop	♦ PI parameter		
P03.03	proportional gain	P03.00, P03.01	20.0	0
	2	F03.00, F03.01		
	Speed loop			
P03.04	integral time 2	P03.03, P03.04	0.200s	0
		Output frequency <u>f</u>		
P03.05	Switch over high	P03.02 P03.05	10.00Hz	0
. 55.55	point frequency	The speed loop dynamic response characteristics of	10.00112	
L	I .	1/ /		

	l .			
		vector control can be adjusted by setting the proportional coefficient and integral time of speed regulator. Increase proportional gain or decrease integral time can accelerate dynamic response of speed loop, however, if the proportional gain is too large or integral time is too small, system oscillation and overshoot may occur; if proportional gain is too small, stable oscillation or speed offset may occur. Speed loop PI parameter is closely related to the system inertial, users should make adjustment based on default PI parameter according to different load characteristics to fulfill different needs. Setting range of P03.00:0.0–200.0; Setting range of P03.01:0.000–10.000s Setting range of P03.03:0.0–200.0 Setting range of P03.04:0.000–10.000s Setting range of P03.04:0.000–10.000s Setting range of P03.05: P03.02–P00.03 (Max. output fraguency)		
P03.06	Speed loop output	frequency) 0-8 (corresponds to 0-2^8/10ms)	0	0
P03.07	Vector control slip compensation coefficient (motoring)	Slip compensation coefficient is used to adjust the slip frequency of vector control to improve speed control		0
P03.08	Vector control slip compensation coefficient (generating)	precision. This parameter can be used to control speed offset. Setting range: 50–200%	100%	0
P03.09	Current loop proportional coefficient P	Note: 1. These two parameters are used to adjust PI parameters of current loop; it affects dynamic response	1000	0
P03.10	Current loop integral coefficient I	speed and control precision of the system directly. The default value needs no adjustment under common conditions; 2. Fit for SVC mode 0 (P00.00=0) and VC mode (P00.00=3); 3. The value of this function code will be updated automatically after parameter autotuning of synchronous motor is done.	1000	0

		Catting range O CEE2E		
		Setting range: 0–65535		
P03.11	Torque setup mode selection	0–1: Set via keypad (P03.12) 2: Set via AI1 (100% corresponds to three times of rated motor current) 3: Set via AI2 (the same as above) 4: Set via AI3 (the same as above) 5: Set via pulse frequency HDIA (the same as above) 6: Set via multi-step torque (the same as above) 7: Set via MODBUS communication (the same as above) 8: Set via PROFIBUS/CANopen/DeviceNet communication (the same as above) 9: Set via Ethernet communication (the same as above) 10: Set via pulse frequency HDIB (the same as above) 11: Set via EtherCat/Profinet communication	0	0
P03.12	Torque set by keypad	12: Set via PLC -300.0%–300.0% (rated motor current)	20.0%	0
P03.13	Torque reference filter time	0.000–10.000s	0.010s	0
P03.14	Source of upper limit frequency setup of forward rotation in torque control	0: Keypad (P03.16) 1: Al1 (100% corresponds to max. frequency) 2: Al2 (the same as above) 3: Al3 (the same as above) 4: Pulse frequency HDIA (the same as above) 5: Multi-step (the same as above) 6: MODBUS communication (the same as above) 7: PROFIBUS /CANopen/ DeviceNet communication (the same as above) 8: Ethernet communication (the same as above) 9: Pulse frequency HDIB (the same as above) 10: EtherCat/Profinet communication 11: PLC 12: Reserved	0	0
P03.15	Source of upper limit frequency setup of reverse rotation in torque control	0: Keypad (P03.17) 1: Al1 (100% corresponds to max. frequency) 2: Al2 (the same as above)	0	0

	ı		1	
		5: Multi-step (the same as above)		
		6: MODBUS communication (the same as above)		
		7: PROFIBUS /CANopen/ DeviceNet communication		
		(the same as above)		
		8: Ethernet communication (the same as above)		
		9: Pulse frequency HDIB (the same as above)		
		10: EtherCat/Profinet communication		
		11: PLC		
		12: Reserved		
		Note: Source 1-11, 100% relative to the max. frequency		
	Keypad limit value			
	of upper limit	This function code is used to set frequency limit. 100%		
P03.16	frequency of	corresponds to the max. frequency. P03.16 sets the	50.00Hz	0
	forward rotation in	value when P03.14=1; P03.17 sets the value when		
	torque control	P03.15=1.		
	Max. output	Setting range: 0.00Hz–P00.03 (Max. output frequency)		
P03.17	frequency		50.00Hz	0
	Source of upper limit setup of the torque during	0: Keypad (P03.20)		
		1: Al1 (100% relative to three times of motor current)		
		2: Al2 (the same as above)		
		3: Al3 (the same as above)		
		4: Pulse frequency HDIA (the same as above)		
		5: MODBUS communication (the same as above)		
P03.18		6: PROFIBUS/CANopen/DeviceNet communication	0	0
		(the same as above)		
	motoring	7: Ethernet communication (the same as above)		
		8: Pulse frequency HDIB (the same as above)		
		9: EtherCat/Profinet communication		
		10: PLC		
		11: Reserved		
		0: Keypad (P03.21)		
		1: Al1 (100% relative to three times of motor current)		
		2: Al2 (the same as above)		
		3: Al3 (the same as above)		
	Source of upper	4: Pulse frequency HDIA (the same as above)		
P03.19	limit setup of	5: MODBUS communication (the same as above)	0	0
	brake torque	6: PROFIBUS/CANopen/DeviceNet communication		
		(the same as above)		
		7: Ethernet communication (the same as above)		
		8: Pulse frequency HDIB (the same as above)		
	l .			

		9: EtherCat/Profinet communication		
		10: PLC		
		11: Reserved		
P03.20	Set upper limit of the torque when motoring via keypad	This function code is used to set torque limit.	180.0%	0
P03.21	Set upper limit of brake torque via keypad	Setting range: 0.0–300.0% (rated motor current)	180.0%	0
P03.22	Flux-weakening coefficient of constant-power zone	Used when asynchronous motor is in flux-weakening control.	0.3	0
P03.23	Min. flux- weakening point of constant-power zone	Flux-weakening coefficient of motor 0.1 1.0 2.0 Min. flux-weakening limit of motor P03.22 and P03.23 are valid during constant power. When motor speed is above rated speed, motor enters flux-weakening running state. The flux-weakening control coefficient can change the flux-weakening curvature, the larger the coefficient, the steeper the curve, the smaller the coefficient, the smoother the curve. Setting range of P03.22: 0.1–2.0 Setting range of P03.23: 10%–100%	20%	0
P03.24	Max. voltage limit	P03.24 sets the maximum output voltage of the inverter, which is the percentage of rated motor voltage. This value should be set according to field conditions. Setting range:0.0–120.0%	100.0%	0
P03.25	Pre-exciting time	Carry out motor pre-exciting during starting to build a magnetic field inside the motor to improve the torque characteristics of motor during starting. Setting range: 0.000–10.000s	0.300s	0
P03.26	Flux-weakening proportional gain	0–8000	1000	0

D00.07	Vector control	0: Display as per actual value		
P03.27	speed display	1: Display as per the set value	0	0
	Static friction			
P03.28	compensation	0.0–100.0%	0.0%	0
	coefficient			
	Corresponding			
P03.29	frequency point of	0.50- P03.31	1.00Hz	0
	static friction			
	High speed			
D00.00	friction	0.0.400.00/	0.00/	
P03.30	compensation	0.0–100.0%	0.0%	0
	coefficient			
	Corresponding			
B00.04	frequency of high	P00 00 400 00U	50.0011	
P03.31	speed friction	P03.29–400.00Hz	50.00Hz	0
	torque			
D02.22	Torque control	0:Disable	0	0
P03.32	enable	1:Enable	0	0
P03.33-	Reserved	0–65535	0	
P03.34	variables	0-0000	U	
		Ones place: Reserved		
		0: Reserved		
		1: Reserved		
		Tens place: Reserved		
		0: Reserved		
	Control	1: Reserved		
P03.35	optimization	Hundreds place: ASR integral separation enabling	0x0000	0
	setting	0: Disabled		
		1: Enabled		
		Thousands place: Reserved		
		0: Reserved		
		1: Reserved		
		Range: 0x0000–0x1111		
P03.36	Speed loop	0.00-10.00s	0.00s	0
1 00.00	differential gain	0.00	0.003	
	High-frequency	Under closed-loop vector control mode (P00.00=3) and		
P03.37	current loop	P03.39, the current loop PI parameters are P03.09 and	1000	0
P03.37	proportional	P03.10; above P03.39, the PI parameters are P03.37	1000	
	coefficient	and P03.38.		

	1			
	High-frequency	Setting range of P03.37: 0–20000		
P03.38	current loop	Setting range of P03.38: 0–20000	1000	0
	integral coefficient	Setting range of P03.39: 0.0–100.0% (relative to max.		
	Current loop high-	frequency)		
P03.39	frequency switch-		100.0%	0
	over point			
	Inertia	0 5: 11		
P03.40	compensation	0: Disable	0	0
	enable	1: Enable		
	Upper limit of			
	inertia	Limit the max. inertia compensation torque to prevent		
P03.41	compensation	inertia compensation torque from being too large.	10.0%	0
	torque	Setting range: 0.0–150.0% (rated motor torque)		
	Inertia	Filter times of inertia compensation torque, used to		
P03.42	compensation	smooth inertia compensation torque.	7	0
	filter times	Setting range: 0–10		
		Due to friction force, it is required to set certain		
	Inertia identification torque value	identification torque for the inertia identification to be		
P03.43		performed properly.		0
		0.0–100.0% (rated motor torque)		
	Enable inertia	0: No operation		
P03.44	identification	1: Start identification	0	0
P03.45-	Reserved			
P03.46	variables	0–65535	0	•
P04 grou	p V/F control			
		This group of function code defines the V/F curve of		
		motor 1 to satisfy different load characteristics needs.		
		0: Straight V/F curve; fit for constant-torque load		
		1: Multi-point V/F curve		
		2: Torque down V/F curve (1.3th order)		
		3: Torque down V/F curve (1.7th order)		
	V/F curve setup of	4: Torque down V/F curve (2.0 nd order)		
P04.00	motor 1	Curve 2–4 are suitable for torque-variable load of fan	0	0
		pump and similar equipment. Users can make		
		adjustment based on load characteristics to achieve		
		optimal energy-saving effect.		
		5: Customized V/F (V/F separation); under this mode, V		
		is separated from f. Users can adjust f through the		
		frequency reference channel set by P00.06 to change		
	<u> </u>	inequency reference charmer set by 1 00.00 to charige		

		1		
		the curve characteristic, or adjust V through the voltage		
		reference channel set by P04.27 to change the curve		
		characteristics.		
		Note: The V_b in the figure below corresponds to rated		
		motor voltage, and \mathbf{f}_{b} corresponds to rated motor		
		frequency.		
		Output voltage V _b		
		Linear type Torque step-down V/F curve (1.3 th order) Torque step-down V/F curve (1.7 th order)		
		Torque step-down V/F curve (2.0 nd order)		
		Square type Output frequency		
	Torque boost of	In order to compensate for low-frequency torque		
P04.01	motor 1	characteristics, users can make some boost	0.0%	0
	motor i	compensation to the output voltage. P04.01 is relative		
		to the maximum output voltage V _b .		
		P04.02 defines the percentage of cut-off frequency of		
		manual torque boost to the rated motor frequency fb.		
		Torque boost can improve the low-frequency torque		
		characteristics of V/F.		
		Users should select torque boost based on the load, eg.		
		larger load requires larger torque boost, however, if the		
		torque boost is too large, the motor will run at over-		
		excitation, which will cause increased output current		
		and motor heat-up, thus degrading the efficiency.		
		When torque boost is set to 0.0%, the inverter is		
D04.00	Motor 1 torque	automatic torque boost.	00.00/	
P04.02	boost cut-off	Torque boost cut-off threshold: Below this frequency	20.0%	0
		threshold, the torque boost is valid, exceeding this		
		threshold will nullify torque boost.		
		▲ Output voltage		
		V ₀ +		
		V _{boost} Output		
		I frequency		
		t _{Cutoff} T _b		
		Setting range of P04.01: 0.0%: (automatic) 0.1%-		
		10.0%		
P04.03		Setting range of P04.02: 0.0%–50.0%		
	V/F frequency	When P04.00 =1 (multi-point V/F curve), users can set	0.00Hz	0

		V/F		
	point 1 of motor 1	V/F curve via P04.03–P04.08.		
P04.04	V/F voltage point	V/F curve is usually set according to the	00.0%	0
1 0 1.0 1	1 of motor 1	characteristics of motor load.		Ŭ
P04.05	V/F frequency	Note: V1 <v2<v3, f1<f2<f3.="" if="" is<="" low-frequency="" td="" voltage=""><td>0.00Hz</td><td>0</td></v2<v3,>	0.00Hz	0
1 04.00	point 2 of motor 1	set too high, motor overheat or burnt-down may occur,	0.00112	0
P04.06	V/F voltage point	and overcurrent stall or overcurrent protection may	0.0%	0
F 04.00	2 of motor 1	occur to the inverter.	0.070)
P04.07	V/F frequency	Output voltage	0.00Hz	0
F04.07	point 3 of motor 1	V3	0.00HZ	O
		V2 Output Output frequency(Hz)		
		Setting range of P04.03: 0.00Hz–P04.05		
		Setting range of P04.04: 0.0%–110.0% (rated voltage		
P04.08	V/F voltage point	of motor 1)	00.0%	0
	3 of motor 1	Setting range of P04.05: P04.03–P04.07 Setting range of P04.06: 0.0%–110.0% (rated voltage		
		of motor 1)		
		Setting range of P04.07: P04.05–P02.02 (rated		
		frequency of asynchronous motor 1) or P04.05–		
		P02.16 (rated frequency of synchronous motor 1)		
		Setting range of P04.08: 0.0%–110.0% (rated voltage		
		of motor 1)		
		This parameter is used to compensate for the motor		
		rotating speed change caused by load change in the		
		SVPWM mode, and thus improve the rigidity of the		
		mechanical characteristics of the motor. You need to		
		calculate the rated slip frequency of the motor as		
	V/F slip	follows:		
P04.09	compensation	∆f=fb-n×p/60	0.0%	0
	gain of motor 1	where fb is the rated frequency of motor 1,		
	· ·	corresponding to P02.02; n is the rated speed of motor		
		1, corresponding to P02.03; p is the number of pole		
		pairs of motor 1. 100% corresponds to the rated slip		
		frequency △f of motor 1.		
		Setting range: 0.0–200.0%		
D04.40	Low-frequency	Under SVPWM control mode, the motor, especially the	10	
P04.10	oscillation control	large-power motor may experience current oscillation	10	0

	I			ı .
	factor of motor 1	during certain frequencies, which may lead to unstable		
	High-frequency	motor operation, or even inverter overcurrent, users		
P04.11	oscillation control	can adjust these two parameters properly to eliminate	10	0
	factor of motor 1	such phenomenon.		
	Oscillation control	Setting range of P04.10: 0–100		
P04.12		Setting range of P04.11: 0–100	30 00H=	0
P04.12	threshold of motor	Setting range of P04.12: 0.00Hz–P00.03 (Max. output	30.00Hz	
	1	frequency)		
		This parameter defines the V/F curve of motor 2 of the		
		MSI350 series to meet various load characteristic		
		requirements.		
	V/F curve setup of	0: Straight V/F curve;		
P04.13	motor 2	1: Multi-point V/F curve	0	0
	1110101 2	2: Torque-down V/F curve (1.3 th order)		
		3: Torque-down V/F curve (1.7 th order)		
		4: Torque-down V/F curve (2.0 nd order)		
		5: Customize V/F (V/F separation)		
P04.14	Torque boost of	Note: Refer to the parameter description of P04.01 and	0.0%	0
P04.14	motor 2	P04.02.	0.0%	0
	Motor 2 torque boost cut-off	Setting range of P04.14: 0.0%: (automatic) 0.1%-		
P04.15		10.0%	20.0%	0
P04.15		Setting range of 0.0%-50.0% (relative to rated		
		frequency of motor 2)		
P04.16	V/F frequency	Note: Refer to the parameter description of P04.03-	0.00Hz	0
F04.10	point 1 of motor 2	P04.08	0.00HZ	O
P04.17	V/F voltage point	Setting range of P04.16: 0.00Hz–P04.18	00.00/	0
P04.17	1 of motor 2	Setting range of P04.17:0.0%–110.0% (rated voltage of	00.0%	O
D04.40	V/F frequency	motor 2)	0.0011-	
P04.18	point 2 of motor 2	Setting range of P04.18: P04.16–P04.20	0.00Hz	0
D04.40	V/F voltage point	Setting range of P04.19: 0.0%–110.0% (rated voltage	00.00/	
P04.19	2 of motor 2	of motor 2)	00.0%	0
D04.00	V/F frequency	Setting range of P04.20: P04.18–P12.02 (rated	0.0011	
P04.20	point 3 of motor 2	frequency of asynchronous motor 2) or P04.18–P12.16	0.00Hz	0
P04.21	V/E voltage naint	(rated frequency of synchronous motor 2)		
	V/F voltage point	Setting range of P04.21:0.0%–110.0%(rated voltage of	00.0%	0
	3 of motor 2	motor 2)		
P04.22	V/F slip	This parameter is used to compensate for the motor		
	compensation	rotating speed change caused by load change in the	0.0%	0
	gain of motor 2	SVPWM mode, and thus improve the rigidity of the	0.070	
	gain or motor z	mechanical characteristics of the motor. You need to		

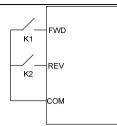
	T			
		calculate the rated slip frequency of the motor as		
		follows:		
		△f=fb-n*p/60		
		where fb is the rated frequency of motor 2,		
		corresponding to P12.02; n is the rated speed of motor		
		2, corresponding to P12.03; p is the number of pole		
		pairs of motor 2. 100% corresponds to the rated slip		
		frequency △f of motor 2.		
		Setting range: 0.0–200.0%		
	Low-frequency	In the SVPWM mode, current oscillation may easily		
P04.23	oscillation control	occur on motors, especially large-power motors, at	10	0
	factor of motor 2	some frequency, which may cause unstable running of		
	High-frequency	motors or even overcurrent of inverters. You can modify		
P04.24	oscillation control	this parameter to prevent current oscillation.	10	0
	factor of motor 2	Setting range of P04.23: 0–100		
	Oscillation control	Setting range of P04.24: 0–100		
P04.25	threshold of motor	Setting range of P04.25: 0.00 Hz–P00.03 (Max. output	30.00Hz	0
	2	frequency)		
		0: No action		
	Energy-saving run	Automatic energy-saving operation		
P04.26		Under light-load state, the motor can adjust the output	0	0
		voltage automatically to achieve energy-saving	· ·	
		purpose		
		0: Keypad; output voltage is determined by P04.28		
		1: Al1		
		2: AI2		
		3: Al3		
		4· HDIA		
		5: Multi-step (the set value is determined by P10 group)		
	Channel of	6: PID		
P04.27	voltage setup	7: MODBUS communication	0	0
	romago comp	8: PROFIBUS/CANopen/DeviceNet communication		
		9: Ethernet communication		
		10: HDIB		
		11: EtherCat/Profinet communication		
		12: PLC programmable card		
		13: Reserved		
		When the channel for voltage setup is set to "keypad",		
P04.28	Set voltage value	the value of this function code is digital voltage set	100.0%	0
	via keypad	value.	. 100.0%	
	1	value.		

		Setting range: 0.0%–100.0%		
	Voltage increase	Voltage increase time means the time needed from		
P04.29	time	outputting the min. voltage to accelerating to output the	5.0s	0
P04.30	Voltage decrease time	max. voltage. Voltage decrease time means the time needed from outputting max. voltage to outputting the min. voltage Setting range: 0.0–3600.0s	5.0s	0
P04.31	Output max. voltage	Set the upper/lower limit value of output voltage.	100.0%	0
P04.32	Output min. voltage	Vmax Vset Vmin Vmin Vmin Vmin Vmin Vmin Vmin Vmin	0.0%	0
P04.33	Flux-weakening coefficient in the constant power zone	1.00–1.30	1.00	0
P04.34	Input current 1 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is lower than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	20.0%	0
P04.35	Input current 2 in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the reactive current of the motor when the output frequency is higher than the frequency set in P04.36. Setting range: -100.0%—+100.0% (of the rated current of the motor)	10.0%	0
P04.36	Frequency threshold for input current switching in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the frequency threshold for the switching between input current 1 and input current 2. Setting range: 0.00 Hz–P00.03 (Max. output frequency)	50.00Hz	0
P04.37	Reactive current	When the synchronous motor VF control mode is	50	0

				1
	closed-loop	enabled, this parameter is used to set the proportional		
	proportional	coefficient of the reactive current closed-loop control.		
	coefficient in	Setting range: 0–3000		
	synchronous			
	motor VF			
P04.38	Reactive current closed-loop integral time in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the integral coefficient of the reactive current closed-loop control. Setting range: 0–3000	30	0
P04.39	Reactive current closed-loop output limit in synchronous motor VF control	When the synchronous motor VF control mode is enabled, this parameter is used to set the output limit of the reactive current in the closed-loop control. A greater value indicates a higher reactive closed-loop compensation voltage and higher output power of the motor. In general, you do not need to modify this parameter. Setting range: 0–16000	8000	0
	Enable/disable IF	3 3 1 1111		
	mode for	0: Disabled		
P04.40	asynchronous	1: Enabled	0	0
	motor 1			
P04.41	Current setting in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the output current. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–200.0%	120.0%	0
P04.42	Proportional coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the proportional coefficient of the output current closed-loop control. Setting range: 0–5000	650	0
P04.43	Integral coefficient in IF mode for asynchronous motor 1	When IF control is adopted for asynchronous motor 1, this parameter is used to set the inetgral coefficient of the output current closed-loop control. Setting range: 0–5000	350	0
P04.44	Frequency	When IF control is adopted for asynchronous motor 1,		
	threshold for	this parameter is used to set the frequency threshold for	40.001.1-	
	switching off IF	switching off the output current closed-loop control.	10.00Hz	0
	mode for	When the frequency is lower than the value of this		

	<u> </u>			ı
	asynchronous	parameter, the current closed-loop control in the IF		
	motor 1	control mode is enabled; and when the frequency is		
		higher than that, the current closed-loop control in the		
		IF control mode is disabled.		
		Setting range: 0.00–20.00 Hz		
	Enable/disable IF			
P04.45	mode for	0: Disabled	0	0
1 04.43	asynchronous	1: Enabled	U	
	motor 2			
	Current setting in	When IF control is adopted for asynchronous motor 2,		
	IF mode for	this parameter is used to set the output current. The		
P04.46		value is a percentage in relative to the rated current of	120.0%	0
	asynchronous	the motor.		
	motor 2	Setting range: 0.0–200.0%		
	Proportional	When IE control is adopted for counchronous mater 2		
	coefficient in IF	When IF control is adopted for asynchronous motor 2, this parameter is used to set the proportional coefficient		
P04.47	mode for		650	0
	asynchronous	of the output current closed-loop control.		
	motor 2	Setting range: 0–5000		
	Integral coefficient	When IF control is adopted for asynchronous motor 2,		
D04.40	in IF mode for	this parameter is used to set the inetgral coefficient of	350	0
P04.48	asynchronous	the output current closed-loop control.	330	
	motor 2	Setting range: 0–5000		
		When IF control is adopted for asynchronous motor 2,		
	Frequency threshold for switching off IF mode for asynchronous	this parameter is used to set the frequency threshold		
		for switching off the output current closed-loop control.		
		When the frequency is lower than the value of this		
P04.49		parameter, the current closed-loop control in the IF	10.00Hz	0
		control mode is enabled; and when the frequency is		
		higher than that, the current closed-loop control in the		
	motor 2	IF control mode is disabled.		
		Setting range: 0.00–20.00 Hz		
P04.50	Reserved variable	0–65535	0	•
P04.51	Reserved variable	0–65535	0	•
P05 group Input terminals				
		0x00-0x11		
	HDI input type	Ones: HDIA input type		
P05.00		0: HDIA is high-speed pulse input	0	0
		1: HDIA is digital input		
L	l	1 1		L

		Tanas LIDID innust trans		
		Tens: HDIB input type		
		0: HDIB is high-speed pulse input		
		1: HDIB is digital input		
P05.01	Function of S1	0: No function	1	0
	terminal	1: Forward running		
P05.02	Function of S2	2: Reverse running	4	0
. 00.02	terminal	3: 3-wire control/Sin		
P05.03	Function of S3	4: Forward jogging	7	0
1 00.00	terminal	5: Reverse jogging	'	
P05.04	Function of S4	6: Coast to stop	0	0
F 03.04	terminal	7: Fault reset	0	•
P05.05	Function of HDIA	8: Running pause	0	0
P05.05	terminal	9: External fault input	U	0
		10: Frequency increase (UP)		
		11: Frequency decrease (DOWN)		
		12: Clear frequency increase/decrease setting		
		13: Switch-over between setup A and setup B		
		14: Switch-over between combination setup and setup		
	Function of HDIB terminal	A		
		15: Switch-over between combination setup and setup		
		В	0	0
		16: Multi-step speed terminal 1		
		17: Multi-step speed terminal 2		
		18: Multi-step speed terminal 3		
		19: Multi-step speed terminal 4		
		20: Multi-step speed pause		
P05.06		21: Acceleration/deceleration time selection 1		
		22: Acceleration/deceleration time selection 2		
		23: Simple PLC stop reset		
		24: Simple PLC pause		
		25: PID control pause		
		26: Wobbling frequency pause		
		27: Wobbling frequency reset		
		28: Counter reset		
		29: Switch-over between speed control and torque		
		control		
		30: Acceleration/deceleration disabled		
		31: Counter trigger		
		32: Reserved		
		33: Clear frequency increase/decrease setting		


temporarily
34: DC brake
35: Switch-over between motor 1 and motor 2
36: Command switches to keypad
37: Command switches to terminal
38: Command switches to communication
39: Pre-exciting command
40: Zero out power consumption quantity
41: Maintain power consumption quantity
42: Source of upper torque limit switches to keypad
43: Position reference point input (only S6, S7 and S8
are valid)
44: Spindle orientation disabled
45: Spindle zeroing/local positioning zeroing
46: Spindle zero position selection 1
47: Spindle zero position selection 2
48: Spindle scale division selection 1
49: Spindle scale division selection 2
50: Spindle scale division selection 3
51: Position control and speed control switch-over
terminal
52: Pulse input disabled
53: Clear position deviation cleared
54: Switch over position proportional gain
55: Enable cyclic positioning of digital position
positioning
56: Emergency stop
57: Motor over-temperature fault input
58: Enable rigid tapping
59: Switches to V/F control
60: Switches to FVC control
61: PID polarity switch-over
62: Reserved
63: Enable servo
64: Limit of forward run
65: Limit of reverse run
66: Zero out encoder counting
67: Pulse increase
68: Enable pulse superimposition

69: Pulse decrease

		70: Electronic gear selection		
		71–79: Reserved		
P05.07	Reserved	0–65535	0	•
P05.08	variables Polarity of input terminal	This function code is used to set the polarity of input terminals. When the bit is set to 0, input terminal polarity is positive; When the bit is set to 1, input terminal polarity is negative; 0x000-0x3F	0x000	0
P05.09	Digital filter time	Set S1–S4, filter time of HDI terminal sampling. In cases where interference is strong, increase the value of this parameter to avoid mal-operation. 0.000–1.000s	0.010s	0
P05.10	Virtual terminal setting	0x000–0x3F (0: disable, 1: enable) BIT0: S1 virtual terminal BIT1: S2 virtual terminal BIT2: S3 virtual terminal BIT3: S4 virtual terminal BIT4: HDIA virtual terminal BIT5: HDIB virtual terminal	0x00	0
P05.11	2/3 Wire control mode	This function code is used to set the 2/3 Wire control mode. 0: 2-Wire control 1; integrate enabling function with direction. This mode is the most popular dual-line mode. Direction of motor rotation is determined by the defined FWD/REV terminal command. FWD REV Running Command OFF OFF Stop ON OFF ON Reverse running OFF ON Reverse running ON ON Hold 1: 2-wire control 2; separate enabling function with direction. In this mode, the defined FWD is enabling terminal, and the direction is determined by the state of REV.	0	0

FWD	REV	Running command
OFF	OFF	Stop
ON	OFF	Forward running
OFF	ON	Stop
ON	ON	Reverse running

2: 3-wire control 1; This mode defines Sin as enabling terminal, and the running command is generated by FWD, the direction is controlled by REV. During running, the Sin terminal should be closed, and terminal FWD generates a rising edge signal, then the inverter starts to run in the direction set by the state of terminal REV; the inverter should be stopped by disconnecting terminal Sin.

The direction control during running is shown below.

		Previous	Current
SIn	REV	running	running
		direction	direction
ON	OFF→ON	Forward	Reverse
ON	OI I →ON	Reverse	Forward
ON	ON→OFF	Reverse	Forward
ON	ON→OFF	Forward	Reverse
ON→OFF	ON	Decelera	te to ston
O1 1 →O11	OFF	Deceloia	ic to stop

Sln: 3-wire control/Sin, FWD: Forward running, REV: Reverse running

3: 3-wire control 2; This mode defines Sin as enabling terminal. The running command is generated by FWD

		or REV, and th running, the ter FWD or REV g the running and be stopped by	minal Sin sho generates a r d direction of disconnection SB1 SB2 SB3 RI	ould be closed ising edge si inverter; the i g terminal Sir	d, and terminal gnal to control nverter should		
		SIn	FWD	REV	Running direction		
		ON	OFF→ON	ON OFF	Forward Forward		
			ON	OFF	Reverse		
		ON	OFF	OFF→ON	Reverse		
		ON→OFF			Decelerate to stop		
		Sln: 3-wire cor	ntrol/Sin, FW	D: Forward	running, REV:		
		Reverse runnir	Ü				
		Note: For dua terminal is va		•			
		command giv	•	•	-		
		again after th	•	•			
		the control te					
		make the inve		•	-		
		FWD/REV aga length stop,		• •	• •	1	
		terminal contr			p		
P05.12	S1 terminal switch-on delay	There for the			an dalar str	0.000s	0
P05.13	S1 terminal switch-off delay	These function programmable	input termin	nals during			0
P05.14	S2 terminal switch-on delay	from switch-on	IO SWITCH-OTT	•		0.000s	0

				l
P05.15	S2 terminal switch-off delay	Si electrical level	0.000s	0
	S3 terminal	Si valid invalid /// valid/////// invalid		
P05.16	_	Switcn-on Switcn-off	0.000s	0
	switch-on delay	delay delay		
P05.17	S3 terminal	Setting range: 0.000–50.000s	0.000s	0
	switch-off delay	Note: After a virtual terminal is enabled, the state of the		
P05.18	S4 terminal	terminal can be changed only in communication mode.	0.000s	0
	switch-on delay	The communication address is 0x200A.		
P05.19	S4 terminal		0.000s	0
	switch-off delay			
P05.20	HDIA terminal		0.000s	0
1 00.20	switch-on delay		0.0000	
P05.21	HDIA terminal		0.000s	0
1 00.21	switch-off delay		0.0003	O
P05.22	HDIB terminal		0.000s	0
F05.22	switch-on delay		0.0008	0
P05.23	HDIB terminal		0.000s	0
F05.25	switch-off delay		0.0008	0
P05.24	Lower limit value	These function codes define the relation between	0.00V	0
F05.24	of Al1	analog input voltage and corresponding set value of	0.00 v	0
	Corresponding	analog input. When the analog input voltage exceeds		
P05.25	setting of lower	the range of max./min. input, the max. input or min.	0.0%	0
	limit of AI1	input will be adopted during calculation.		
D05.00	Upper limit value	'	40.0014	
P05.26	of Al1	When analog input is current input, 0-20mA current	10.00V	0
	Corresponding	corresponds to 0–10V voltage. In different applications, 100% of analog setting		
P05.27	setting of upper	, , , , , , , , , , , , , , , , , , , ,	100.0%	0
	limit of AI1	corresponds to different nominal values.		
	Input filter time of	The figure below illustrates several settings. A Corresponding setting		
P05.28	Al1	100%	0.030s	0
	Lower limit value			
P05.29	of AI2		-10.00V	0
	Corresponding	-10V 0 / AI →		
P05.30	setting of lower	20mA Al1	-100.0%	0
1	limit of AI2	AI2 AI1		
	Intermediate	-100%		
P05.31	value 1 of Al2		0.00V	0
	Corresponding	Input filter time: Adjust the sensitivity of analog input,		_
P05.32	setting of	increase this value properly can enhance the anti-	0.0%	0
		I .		ı

	:	interest and the second and the seco		
		interference capacity of analog variables; however, it		
	1 of Al2	will also degrade the sensitivity of analog input.		
P05.33	Intermediate	Note: Al1 can support 0–10V/0–20mA input, when Al1	0.00V	0
	value 2 of Al2	selects 0–20mA input; the corresponding voltage of		
	Corresponding	20mA is 10V; Al2 supports -10V-+10V input.		
P05.34	setting of	Setting range of P05.24: 0.00V–P05.26	0.0%	0
		Setting range of P05.25: -100.0%-100.0%		
	2 of AI2	Setting range of P05.26: P05.24–10.00V		
P05.35	Upper limit value	Setting range of P05.27: -100.0%–100.0%	10.00V	0
1 00.00	of AI2	Setting range of P05.28: 0.000s–10.000s	10.00 V	O
	Corresponding	Setting range of P05.29: -10.00V–P05.31		
P05.36	setting of upper	Setting range of P05.30: -100.0%–100.0%	100.0%	0
	limit of AI2	Setting range of P05.31: P05.29–P05.33		
		Setting range of P05.32: -100.0%–100.0%		
		Setting range of P05.33: P05.31–P05.35		
505.05	Input filter time of	Setting range of P05.34: -100.0%–100.0%		
P05.37	Al2	Setting range of P05.35: P05.33–10.00V	0.030s	0
		Setting range of P05.36: -100.0%–100.0%		
		Setting range of P05.37: 0.000s–10.000s		
	HDIA high-speed	0: Set input via frequency		
P05.38	pulse input	1: Reserved	0	0
	function	2: Input via encoder, used in combination with HDIB		
	Lower limit		0.000	
P05.39	frequency of HDIA	0.000 KHz – P05.41	KHz	0
	Corresponding			
	setting of lower			
P05.40	limit frequency of	-100.0%–100.0%	0.0%	0
	HDIA			
	Upper limit		50.000	
P05.41	frequency of HDIA	P05.39 –50.000KHz	KHz	0
	Corresponding		INIZ	
P05.42	setting of upper	-100.0%–100.0%	100.0%	0
	limit frequency of			
	HDIA			
P05.43	HDIA frequency	0.000s-10.000s	0.030s	0
	input filter time			
	HDIB high-speed	0: Set input via frequency		
P05.44	pulse input	1: Reserved	0	0
	function selection	2: Encoder input, it should be used in combination with		-
		HDIA		

				1
P05.45	Lower limit	0.000 KHz – P05.47	0.000	0
	frequency of HDIB		KHz	
	Corresponding			
P05.46	setting of lower	-100.0%-100.0%	0.0%	0
	limit frequency of			
	HDIB			
P05.47	Upper limit	P05.45 –50.000KHz	50.000	0
	frequency of HDIB		KHz	
	Corresponding			
P05.48	setting of upper	-100.0%-100.0%	100.0%	0
	limit frequency of			
	HDIB			
P05.49	HDIB frequency	0.000s-10.000s	0.030s	0
	input filter time	0.0000	0.0000	Ŭ
		0: Voltage type		
P05.50	Al1 input signal	1: Current type	0	0
1 00.00	type	Note: You can set the Al1 input signal type through the	Ü	
		corresponding function code.		
P05.51-	Reserved	0–65535	0	
P05.52	variables			
P06 grou	p Output termina	ıls		
		0: Open collector high-speed pulse output: Max.		
		frequency of the pulse is 50.00kHz. For details about		
P06.00	HDO output type	the related functions, see P06.27–P06.31.	0	0
		1: Open collector output: For details about the related		
		functions, see P06.02.		
P06.01	Y output selection	0: Invalid	0	0
	HDO output	1: In running		
P06.02	selection	2: In forward running	0	0
	Relay RO1 output	3: In reverse running		
P06.03	selection	4: In jogging	1	0
		5: Inverter fault		
		6: Frequency level detection FDT1		
		7: Frequency level detection FDT2		
	Relay RO2 output	8: Frequency reached	_	
P06.04	selection	9: Running in zero speed	5	0
		10: Reach upper limit frequency		
		11: Reach lower limit frequency		
		12: Ready to run		

		I		1
		13: In pre-exciting		
		14: Overload pre-alarm		
		15: Underload pre-alarm		
		16: Simple PLC stage completed		
		17: Simple PLC cycle completed		
		18: Reach set counting value		
		19: Reach designated counting value		
		20: External fault is valid		
		21: Reserved		
		22: Reach running time		
		23: Virtual terminal output of MODBUS communication		
		24: Virtual terminal output of POROFIBUS /CANopen		
		communication		
		25: Virtual terminal output of Ethernet communication		
		26: DC bus voltage established		
		27: z pulse output		
		28: During pulse superposition		
		29: STO act		
		30: Positioning completed		
		31: Spindle zeroing completed		
		32: Spindle scale-division completed		
		33: In speed limit		
		34–35: Reserved		
		36: Speed/position control switch-over completed		
		37–40: Reserved		
		41: C Y1 from PLC (You need to set P27.00 to 1.)		
		42: C_Y2 from PLC (You need to set P27.00 to 1.)		
		43: C_HDO from PLC (You need to set P27.00 to 1.)		
		44: C_RO1 from PLC (You need to set P27.00 to 1.)		
		45: C_RO2 from PLC (You need to set P27.00 to 1.)		
		46: C_RO3 from PLC (You need to set P27.00 to 1.)		
		47: C_RO4 from PLC (You need to set P27.00 to 1.)		
		48–63: Reserved		
		29: STO action		
		48–63: Reserved		
	Output terminal	This function code is used to set the polarity of output		
	polarity selection	terminals.		
P06.05	,,	When the bit is set to 0, input terminal polarity is	00	0
		positive:		
		When the bit is set to 1 input terminal polarity is		
		Trillian and bit is set to 1 input terminal polarity is		l .

		negative.		
		BIT3 BIT2 BIT1 BIT0		
		RO2 RO1 HDO Y		
		Setting range: 0x0–0xF		
P06.06	Y switch-on delay	Sotting range. One on	0.000s	0
P06.07	Y switch-off delay		0.000s	0
P06.08	HDO switch-on delay	This function code defines the corresponding delay of	0.000s	0
P06.09	HDO switch-off delay	the level variation from switch-on to switch-off. Y electric level	0.000s	0
P06.10	Relay RO1 switch-on delay	Y valid Invalid Inval	0.000s	0
P06.11	Relay RO1 switch-off delay	Setting range: 0.000-50.000s Note: P06.08 and P06.09 are valid only when	0.000s	0
P06.12	Relay RO2 switch-on delay	P06.00=1.	0.000s	0
P06.13	Relay RO2 switch-off delay		0.000s	0
P06.14	AO1 output selection	0: Running frequency 1: Set frequency	0	0
P06.15	Reserved variables	Ramps reference frequency Running speed	0	0
P06.16	HDO high-speed pulse output	4: Output current (relative to inverter) 5: Output current (relative to motor) 6: Output voltage 7: Output power 8: Set torque value 9: Output torque 10: Al1 input value 11: Al2input value 12: Al3 input value 13: Input value of high-speed pulse HDIA 14: Set value 1 of MODBUS communication 15: Set value 2 of MODBUS communication 16: Set value 1 of PROFIBUS\CANopen communication 17: Set value 2 of PROFIBUS\CANopen communication 18: Set value 1 of Ethernet communication	0	0

	•		1	
		19: Set value 2 of Ethernet communication		
		20: Input value of high-speed pulse HDIB		
		21: Reserved		
		22: Torque current (bipolar, 100% corresponds to 10V)		
		23: Exciting current (100% corresponds to 10V)		
		24: Set frequency (bipolar)		
		25: Ramps reference frequency (bipolar)		
		26: Running speed (bipolar)		
		27: Set value 2 of EtherCat/Profinet communication		
		28: C_AO1 from PLC (You need to set P27.00 to 1.)		
		29: C_AO2 from PLC (You need to set P27.00 to 1.)		
		30: Running speed		
		31–47: Reserved		
D00 17	Lower limit of AO1	Above function codes define the relation between	0.00/	
P06.17	output	output value and analog output. When the output value	0.0%	0
	Corresponding	exceeds the set max./min. output range, the upper/low		
P06.18	AO1 output of	limit of output will be adopted during calculation.	0.00V	0
	lower limit	When analog output is current output, 1mA		
	Upper limit of AO1	corresponds to 0.5V voltage. In different applications,		
P06.19	output	100% of output value corresponds to different analog	100.0%	0
	Corresponding	outputs.		
P06.20	AO1 output of	AO 10V (20mA)	10.00V	0
	upper limit			
		0.0%		
	AO1 output filter	Setting range of P06.17: -100.0%–P06.19		
P06.21	time	Setting range of P06.18: 0.00V–10.00V	0.000s	0
		Setting range of P06.19: P06.17–100.0%		
		Setting range of P06.20: 0.00V–10.00V		
		Setting range of P06.21: 0.000s–10.000s		
P06.22-	Reserved		_	
P06.26	variables	0–65535	0	•
	Lower limit of			
P06.27	HDO output	-100.0%–P06.29	0.00%	0
	Corresponding			
P06.28	HDO output of	0.00-50.00kHz	0.00kHz	0
	lower limit			
P06.29	Upper limit of	P06.27–100.0%	100.0%	0

	HDO output			
P06.30	Corresponding HDO output of upper limit	0.00–50.00kHz	50.00 kHz	0
P06.31	HDO output filter time	0.000s-10.000s	0.000s	0
P06.32- P06.34	Reserved variable	0–65535	0	•
P07 grou	р НМІ			
P07.00	User password	0–65535 Set it to any non-zero value to enable password protection. 00000: Clear previous user password and disable password protection. After user password becomes valid, if wrong password is inputted, users will be denied entry. It is necessary to keep the user password in mind. Password protection will be effective one minute after exiting function code edit state, and it will display "0.0.0.0.0" if users press PRG/ESC key to enter function code edit state again, users need to input the correct password. Note: Restoring to default values will clear user password, use this function with caution.	0	0
P07.01	Reserved variables	<u>, </u>	/	/
P07.02	Function of keys	Range: 0x00–0x27 Ones: Function selection of QUICK/JOG key 0: No function 1: Jogging 2: Reserved 3: Forward/reverse rotation switch-over 4: Clear UP/DOWN setting 5: Coast to stop 6: Switch over the running command reference mode in sequence 7: Reserved Tens: Reserved	0x01	0
P07.03	Running command channel	When P07.02=6, set the switch-over sequence of running command channel.	0	0

	switch-over	0: keypad control→terminal control→ communication		
	sequence of	control		
	QUICK key	1: keypad control ←→terminal control		
		2: keypad control←→communication control		
		3: terminal control←→communication control		
		Validness selection of stop function of STOP/RST.		
	Stop function	For fault reset, STOP/RST is valid under any situation.		
P07.04	selection of	0: valid only for panel control only	0	0
P07.04	STOP/RST key	1: valid for both panel and terminal control	U	
	STOP/RST key	2: valid for both panel and communication control		
		3: valid for all control modes		
P07.05-			,	,
P07.07	Reserved variables	5	/	/
D07.00	Frequency display	0.01–10.00	4.00	
P07.08	coefficient	Display frequency=running frequency× P07.08	1.00	0
		0.1–999.9%		
P07.09	Speed display coefficient	Mechanical speed=120×display running	100.0%	0
		frequency×P07.09/number of motor pole pairs		
	Linear speed	0.1–999.9%		_
P07.10	display coefficient	Linear speed=mechanical speed×P07.10	1.0%	0
	Temperature of			
P07.11	rectifier bridge	-20.0–120.0°C	/	•
	module			
	Temperature of			
P07.12	inverter module	-20.0–120.0°C	/	•
	Software version			
P07.13	of control board	1.00-655.35	/	•
	Accumulated			
P07.14	running time	0–65535h	/	•
	High bit of inverter			
P07.15	power	Display the power consumption of the inverter.	/	•
	consumption	Inverter power consumption=P07.15×1000+P07.16	,	-
	Low bit of inverter	'		
P07.16	power	Setting range of P07.16: 0.0–999.9 kWh	/	•
	consumption		,	-
P07.17	Reserved		/	/
F VI.II			,	
P07.18	Rated power of	0.4–3000.0kW	/	•
	inverter			
P07.19	Rated voltage of	50–1200V	/	•

	inverter			
P07.20	Rated current of inverter	0.1–6000.0A	1	•
P07.21	Factory barcode 1	0x0000-0xFFFF	/	•
P07.22	Factory barcode 2	0x0000-0xFFFF	1	•
P07.23	Factory barcode 3	0x0000-0xFFFF	1	•
P07.24	Factory barcode 4	0x0000-0xFFFF	1	•
P07.25	Factory barcode 5	0x0000-0xFFFF	1	•
P07.26	Factory barcode 6	0x0000-0xFFFF	1	•
P07.27	Type of present	0: No fault	/	
1 07.27	fault	1: Inverter unit U phase protection (OUt1)	,	
P07.28	Type of the last	2: Inverter unit V phase protection (OUt2)	/	_
107.20	fault	3: Inverter unit W phase protection (OUt3)	,	
P07.29	Type of the last	4: Overcurrent during acceleration (OC1)	/	_
1 07.23	but one fault	5: Overcurrent during deceleration (OC2)	,	
P07.30	Type of the last	6: Overcurrent during constant speed (OC3)	/	
1 07.50	but two fault	7: Overvoltage during acceleration (OV1)	,	
P07.31	Type of the last	8: Overvoltage during deceleration (OV2)	/	
1 07.51	but three fault	9: Overvoltage during constant speed (OV3)	,	
		10: Bus undervoltage fault (UV)		
		11: Motor overload (OL1)		
		12: Inverter overload (OL2)		
		13: Phase loss on input side (SPI)		
		14: Phase loss on output side (SPO)		
		15: Rectifier module overheat (OH1)		
		16: Inverter module overheat (OH2)		
		17: External fault (EF)		
		18: 485 communication fault (CE)		
P07.32	Type of the last	19: Current detection fault (ItE)	,	
P07.32	but four fault	20: Motor autotuning fault (tE)	,	
		21: EEPROM operation fault (EEP)		
		22: PID feedback offline fault (PIDE)		
		23: Brake unit fault (bCE)		
		24: Running time reached (END)		
		25: Electronic overload (OL3)		
		26: Keypad communication error (PCE)		
		27: Parameter upload error (UPE)		
		28: Parameter download error (DNE)		
		29: Profibus communication fault (E-DP)		

	30: Ethernet communication fault (E-NET)	
	31: CANopen communication fault (E-CAN)	
	32: To-ground short-circuit fault 1 (ETH1)	
	33: To-ground short-circuit fault 2 (ETH2)	
	34: Speed deviation fault (dEu)	
	35: Mal-adjustment fault (STo)	
	36: Underload fault (LL)	
	37: Encoder offline fault (ENC10)	
	38: Encoder reversal fault (ENC1D)	
	39: Encoder Z pulse offline fault (ENC1Z)	
	40: Safe torque off (STO)	
	41: Channel H1 safety circuit exception (STL1)	
	42: Channel H2 safety circuit exception (STL2)	
	43: Channel H1 and H2 exception (STL3)	
	44: Safety code FLASH CRC fault (CrCE)	
	45: PLC card customized fault 1 (P-E1)	
	46: PLC card customized fault 2 (P-E2)	
	47: PLC card customized fault 3 (P-E3)	
	48: PLC card customized fault 4 (P-E4)	
	49: PLC card customized fault 5 (P-E5)	
	50: PLC card customized fault 6 (P-E6)	
	51: PLC card customized fault 7 (P-E7)	
	52: PLC card customized fault 8 (P-E8)	
	53: PLC card customized fault 9 (P-E9)	
	54: PLC card customized fault 10 (P-E10)	
	55: Repetitive extension card type fault (E-Err)	
	56: Encoder UVW loss fault (ENCUV)	
	57: Profibus communication fault (E-PN)	
	58: CANopen communication fault (ESCAN)	
	59: Motor over-temperature fault (OT)	
	60: Card slot 1 card identification failure (F1-Er)	
	61: Card slot 2 card identification failure (F2-Er)	
	62: Card slot 3 card identification failure (F3-Er)	
	63: Card slot 1 card communication timeout fault (C1-	
	Er)	
	64: Card slot 2 card communication timeout fault (C2-	
	Er)	
	65: Card slot 3 card communication timeout fault (C3-	
	Er)	
	66: EtherCat communication fault (E-CAT)	
_		

	T		ı	1
		67: Bacnet communication fault (E-BAC)		
		68: DeviceNet communication fault (E-DEV)		
		69: Master-slave synchronous CAN slave fault (S-Err)		
P07.33	Running frequency	of present fault	0.00Hz	•
P07.34	Ramps reference f	requency of present fault	0.00Hz	•
P07.35	Output voltage of p	present fault	0V	•
P07.36	Output current of p	resent fault	0.0A	•
P07.37	Bus voltage of pres	sent fault	0.0V	•
P07.38	Max. temperature	of present fault	0.0°C	•
P07.39	Input terminal state	e of present fault	0	•
P07.40	Output terminal sta	ate of present fault	0	•
P07.41	Running frequency	of the last fault	0.00Hz	•
P07.42	Ramps reference f	requency of the last fault	0.00Hz	•
P07.43	Output voltage of t	he last fault	0V	•
P07.44	Output current of the	ne last fault	0.0A	•
P07.45	Bus voltage of the	last fault	0.0V	•
P07.46	Max. temperature	of the last fault	0.0°C	•
P07.47	Input terminal state	e of the last fault	0	•
P07.48	Output terminal sta	ate of the last fault	0	•
P07.49	Running frequency	of the last but one fault	0.00Hz	•
P07.50	Ramps reference f	requency of the last but one fault	0.00Hz	•
P07.51	Output voltage of t	he last but one fault	0V	•
P07.52	Output current of the	ne last but one fault	0.0A	•
P07.53	Bus voltage of the	last but one fault	0.0V	•
P07.54	Max. temperature	of the last but one fault	0.0°C	•
P07.55	Input terminal state	e of the last but one fault	0	•
P07.56	Output terminal sta	ite of the last but one fault	0	•
P08 grou	p Enhanced fund	tions		
D00.00	Acceleration		Depend	
P08.00	time 2		on model	0
D00.04	Deceleration	See P00.11 and P00.12 for detailed definitions.	Depend	
P08.01	time 2	MSI350 series inverter defines four groups of	on model	0
D00.00	Acceleration	acceleration/deceleration time, which can be selected	Depend	
P08.02	time 3	by multi-function digital input terminal (P05 group). The	on model	0
P08.03	Deceleration	acceleration/deceleration time of the inverter is the first	Depend	0
PU0.U3	time 3	group by default. Setting range: 0.0–3600.0s	on model	U
P08.04	Acceleration	County range. 0.0–0000.03	Depend	0
1 00.04	time 4		on model	

	Deceleration		Depend	
P08.05	time 4		on model	0
	Running	This function code is used to define the reference		
P08.06	frequency of	frequency of the inverter during jogging.	5.00Hz	0
	jogging	Setting range: 0.00Hz–P00.03 (Max. output frequency)		
	1-999	Jogging acceleration time is the time needed for the		
P08.07	Acceleration time	inverter to accelerate from 0Hz to Max. output		0
	of jogging	frequency (P00.03).		
		Jogging deceleration time is the time needed from	Depend	
	Deceleration time	decelerating from Max. output frequency (P00.03) to	on model	
P08.08	of jogging	0Hz.		0
	, 55 5	Setting range: 0.0–3600.0s		
P08.09	Jump frequency 1	When the set frequency is within the range of jump	0.00Hz	0
	Jump frequency	frequency, the inverter will run at the boundary of jump		
P08.10	amplitude 1	frequency.	0.00Hz	0
P08.11	Jump frequency 2	The inverter can avoid mechanical resonance point by	0.00Hz	0
	Jump frequency	setting the jump frequency, and three jump frequency	0.001.12	
P08.12	amplitude 2	points can be set. If the jump frequency points are set	0.00Hz	0
P08.13	Jump frequency 3	to 0, this function will be invalid.	0.00Hz	0
P00.13	Jump frequency 3	Jump17/2* jump amplitude 3	0.00HZ	
P08.14	Jump frequency amplitude 3	frequency 3 Jump frequency 2 Jump frequency 1 1/2* jump amplitude 2 1/2* jump amplitude 2 1/2* jump amplitude 2 1/2* jump amplitude 1 1/2* jump amplitude 1	0.00Hz	0
		Time t		
		Setting range: 0.00Hz–P00.03 (Max. output frequency)		
	Amplitude of			0
P08.15	wobbling	0.0–100.0% (relative to set frequency)	0.0%	
	frequency			
P08.16	Amplitude of jump	0.0–50.0% (relative to amplitude of wobbling	0.0%	0
	frequency	frequency)	0.070	
	Rise time of			0
P08.17	wobbling	0.1–3600.0s	5.0s	
	frequency			
	Descend time of			0
P08.18	wobbling	0.1–3600.0s	5.0s	
	frequency			
P08.19	Switching	0.00-P00.03 (Max. output frequency)	0.00Hz	0

	frequency of	0.00Hz: no switch-over		
	. ,	Switch to acceleration/deceleration time 2 if the running		
	eration time	frequency is larger than P08.19		
P08.20	Frequency threshold of the start of droop control	0.00–50.00Hz	2.00Hz	0
P08.21	Reference frequency of acceleration/decel eration time	0: Max. output frequency 1: Set frequency 2: 100Hz Note: Valid for straight acceleration/deceleration only	0	0
P08.22	Output torque calculation mode	0: Calculated based on torque current	0	0
P08.23	Number of decimal points of frequency	0: Two decimal points 1: One decimal point	0	0
P08.24	Number of decimal points of linear speed	0: No decimal point 1: One 2: Two 3: Three	0	0
P08.25	Set count value	P08.26–65535	0	0
P08.26	Designated count value	0–P08.25	0	0
P08.27	Set running time	0–65535min	0min	0
P08.28	Automatic fault reset times	Automatic fault reset times: When the inverter selects automatic fault reset, it is used to set the times of	0	0
P08.29	Automatic fault reset time interval	automatic reset, if the continuous reset times exceeds the value set by P08.29, the inverter will report fault and stop to wait for repair. Interval of automatic fault reset: select the interval time from when fault occurred to automatic fault reset actions. After inverter starts, if no fault occurred during 60s, the fault reset times will be zeroed out. Setting range of P08.28: 0–10 Setting range of P08.29: 0.1–3600.0s	1.0s	0
P08.30	Reduction ratio of droop control	This function code sets the variation rate of the inverter output frequency based on the load; it is mainly used in	0.00Hz	0

		T	1	
		balancing the power when multiple motors drive the		
		same load.		
		Setting range: 0.00–50.00Hz		
		0x00-0x14		
		Ones: Switch-over channel		
		0: Switch over by terminal		
	0 '' 1	1: Switch over by MODBUS communication		
D00.04	Switch-over	2: Switch over by PROFIBUS/CANopen/DeviceNet		
P08.31	between motor 1	3: Switch over by Ethernet communication	0x00	0
	and motor 2	4: Switch over by EtherCat/Profinet communication		
		Tens: Motor switch over during running		
		0: Disable switch over during running		
		1: Enable switch over during running		
	FDT1 level	When the output frequency exceeds the		
P08.32	detection value	corresponding frequency of FDT level, multi-function	50.00Hz	0
	FDT1 lag	digital output terminal outputs "frequency level		
P08.33	detection value	detection FDT" signal, this signal will be valid until the	5.0%	0
D00.04	FDT2 level	output frequency lowers to below the corresponding	50.0011	
P08.34	detection value	frequency (FDT level-FDT lag detection value), the	50.00Hz	0
		waveform is shown in the figure below.		
		Output frequency f		
		FDT level FDT lag		
P08.35	FDT2 lag detection value	Y1, R01, R02	5.0%	0
		Setting range of P08.32: 0.00Hz-P00.03 (Max. output		
		frequency)		
		Setting range of P08.33: 0.0–100.0% (FDT1 level)		
		Setting range of P08.34: 0.00Hz–P00.03 (Max. output		
		frequency)		
		Setting range of P08.35: 0.0–100.0% (FDT2 level)		
	Detection	When the output frequency is within the positive		
D00.00	Detection value	/negative detection range of the set frequency, the	0.0011	
P08.36	for frequency	multi-function digital output terminal outputs	0.00Hz	0
	arrival	"frequency arrival" signal as shown below.		l

		,		
		Setting range: 0.00Hz–P00.03 (Max. output frequency)		
P08.37	Enable/disable energy-	0: Disable energy-consumption	1	0
P08.37	consumption brake	1: Enable energy-consumption	1	O
P08.38	Energy- consumption brake threshold voltage	Set the starting bus voltage of energy-consumption brake, adjust this value properly can brake the load effectively. The default value will change with the change of voltage class. Setting range: 200.0–2000.0V	220V voltage: 380.0V; 380V voltage: 700.0V; 660V voltage: 1120.0V	0
P08.39	Running mode of cooling fan	Common running mode The fan keeps running after power up	0	0
P08.40	PWM selection	0x0000–0x2121 Ones: PWM mode 0: 3PH modulation and 2-phase modulation 1: 3PH modulation Tens: PWM low-speed carrier limit 0: Limit low-speed carrier to 2K 1: Limit low-speed carrier to 4K 2: No limit on low-speed carrier Hundreds: Reserved Thousands: PWM loading mode 0: PWM loading mode 1 1: PWM loading mode 2 2: Reserved	0x0001	0
P08.41	Overmodulation	0x00-0x11	01	0

	selection	Ones		
	GOIGGEOIT	0: Overmodulation is invalid		
		1: Overmodulation is valid	ļ	
		Tens	ļ	
		0: Mild overmodulation	ļ	
		1: Deepened overmodulation	ļ	
P08.42	Reserved variable	•	/	/
P08.43	Reserved variables		/	/
P00.43	Reserved variables	T		/
		0x000-0x221	ļ	
		Ones: Frequency control selection		
		0: UP/DOWN terminal setup is valid		
		1: UP/DOWN terminal setup is invalid		
		Tens: Frequency control selection		
	UP/DOWN	0: Valid only when P00.06=0 or P00.07=0		
P08.44	terminal control	1: All frequency modes are valid	0x000	0
1 00.44	setup	2: Invalid for multi-step speed when multi-step speed	0,000	
	setup	takes priority	q	
		Hundreds: Action selection during stop		
		0: Valid		
		1: Valid during running, clear after stop		
		2: Valid during running, clear after receiving stop		
		command		
	UP terminal			
	frequency			
P08.45	incremental	0.01–50.00Hz/s	0.50Hz/s	0
	integral rate		ļ	
	DOWN terminal			
	frequency			_
P08.46	decremental	0.01–50.00Hz/s	0.50Hz/s	0
	change rate			
	-	0x000-0x111		
		Ones: Action selection for frequency setup (by keypad	ļ	
		digits) during power down		
	Action selection	0: Save during power down		
P08.47	for frequency	1: Zero out during power down	0x000	0
	setup during	Tens: Action selection for frequency setup (by	5	
	power down	MODBUS) during power down		
		0: Save during power down		
		Save during power down Zero out during power down		
<u> </u>		1. Zoro out during power down		l

				1
		Hundreds: Action selection for frequency setup (by		
		other communication) during power down		
		0: Save during power down		
		1: Zero out during power down		
	High bit of initial	Set the initial value of power consumption.		
P08.48	value of power	Initial value of power consumption=P08.48×1000+	0°	0
	consumption	P08.49		
	Low bit of initial	Setting range of P08.48: 0–59999 kWh (k)		
P08.49	value of power	Setting range of P08.49: 0.0–999.9 kWh	0.0°	0
	consumption	3 3 11 11 11 11 11		
		This function code is used to enable flux braking		
		function.		
		0: Invalid		
		100-150: The larger the coefficient, the stronger the		
		brake intensity		
		The inverter enables motor to decelerate quickly by		
		increasing the motor flux which converts energy		
		generated during braking into thermal energy.		
P08.50	Flux braking	The inverter monitors motor state continuously even	0	0
1 00.50	Tidx braking	during flux braking, thus flux braking can be applied in	O	
		motor stop or used to change motor speed. The flux		
		braking also carries the following advantages.		
		1) Brake immediately after sending stop command,		
		removing the need to wait for flux to attenuate.		
		2) Better cooling effect. During flux braking, the stator		
		current of the motor increases, while the rotor current		
		does not change, while the cooling effect of stator is		
		much more effective than that of the rotor.		
	Current regulation	This function code is used to adjust the current display		
P08.51	coefficient on	value on the AC input side.	0.56	0
	input side	0.00–1.00		
		0: STO alarm lock		
		Alarm-lock means STO alarm must be reset after state		
P08.52	STO lock	restoration when STO occurs.	0	0
1 00.02	010 look	1: STO alarm unlock	J	
		Alarm-unlock means when STO occurs, after state		
		restoration, STO alarm will disappear automatically.		
	Bias value of	0.00 Hz–P00.03 (Max. output frequency)		
P08.53	upper limit	Note: This parameter is valid only for the torque control	0.00Hz	0
	frequency of	mode.		

	torque control			
	Acceleration/decel	0: No limit on acceleration or deceleration		
	eration selection	1: Acceleration/deceleration time 1		
P08.54	of upper limit	2: Acceleration/deceleration time 2	0	0
	frequency of	3: Acceleration/deceleration time 3		
	torque control	4: Acceleration/deceleration time 4		
P09 grou	p PID control			
		When frequency command (P00.06, P00. 07) is set to		
		7, or channel of voltage setup (P04.27) is set to 6, the		
		inverter running mode is process PID control.		
		This parameter determines the target reference		
		channel of process PID.		
		0: Keypad (P09.01)		
		1: Al1		
		2: AI2		
		3: AI3		
		4: High-speed pulse HDIA		
	PID reference	5: Multi-step		
P09.00		6: MODBUS communication	0	0
	source	7: PROFIBUS/CANopen/DeviceNet communication		
		8: Ethernet communication		
		9: High-speed pulse HDIB		
		10: EtherCat/Profinet communication		
		11: Programmable extension card		
		12: Reserved		
		The set target value of process PID is relative value, the		
		set 100% corresponds to 100% of the feedback signal		
		of controlled system.		
		The system operates based on the relative value (0-		
		100.0%)		
	Pre-set PID	Users need to set this parameter when P09.00 is set to		
D00 04		0, the reference value of this parameter is the feedback	0.00/	0
P09.01	reference of	variable of the system.	0.0%	
	keypad	Setting range: -100.0%–100.0%		
		This parameter is used to select PID feedback channel.		
	PID feedback	0: Al1		
P09.02		1: AI2	0	0
P09.02	source	2: Al3		
		3: High-speed pulse HDIA		

		<u></u>		
		4: MODBUS communication		
		5: PROFIBUS/CANopen/DeviceNet communication		
		6: Ethernet communication		
		7: High-speed pulse HDIB		
		8: EtherCat/Profinet communication		
		9: Programmable extension card		
		10: Reserved		
		Note: The reference channel and feedback channel		
		cannot overlap; otherwise, PID cannot be		
		controlled effectively.		
		0: PID output is positive characteristic: namely, the		
		feedback signal is larger than the PID reference, which		
		requires the inverter output frequency to decrease for		
	PID output	PID to reach balance, eg, tension PID control of winding		
P09.03	characteristics	1: PID output is negative characteristics: namely the	0	0
		feedback signal is less than PID reference, which		
		requires inverter output frequency to increase for PID to		
		reach balance, eg, tension PID control of unwinding.		
		This function code is suitable for proportional gain P of		
		PID input.		
		It determines the regulation intensity of the whole PID		
		regulator, the larger the value of P, the stronger the		
		regulation intensity. If this parameter is 100, it means		
P09.04	Proportional gain	when the deviation between PID feedback and	1.80	0
	(Kp)	reference is 100%, the regulation amplitude of PID		
		regulator (ignoring integral and differential effect) on		
		output frequency command is the max. frequency		
		(ignoring integral and differential actions).		
		Setting range: 0.00–100.00		
		It determines the speed of integral regulation made on	0.90s	
		the deviation between PID feedback and reference by	0.000	
		PID regulator. When the deviation between PID		
		feedback and reference is 100%, the regulation of		
		integral regulator (ignoring integral and differential		
P09.05	Integral time (Ti)	actions), after undergoing continuous regulation during		0
1 03.03	micgial tille (11)	this time period, can reach Max. output frequency		
		(P00.03)		
		The shorter the integral time, the stronger the		
		regulation intensity.		
		Setting range: 0.00–10.00s		

P09.06	Derivative time (Td)	It determines the intensity of the regulation made on the change rate of deviation between PID feedback and reference by PID regulator. If feedback changes by 100% during this period, the regulation of differential regulator (ignoring integral and differential actions) is Max. output frequency (P00.03) The longer the derivative time, the stronger the regulation intensity. Setting range: 0.00–10.00s	0.00s	0
P09.07	Sampling cycle (T)	It means the sampling cycle of feedback. The regulator operates once during each sampling cycle. The larger the sampling cycle, the slower the response. Setting range: 0.001–10.000s	0.001s	0
P09.08	Limit of PID control deviation	It is the max. allowable deviation of PID system output value relative to closed-loop reference value. Within this limit, PID regulator stops regulation. Set this function code properly to regulate the precision and stability of PID system. Setting range: 0.0–100.0% Peedback Time t Time t	0.0%	0
P09.09	Upper limit value of PID output	These two function codes are used to set the upper/lower limit value of PID regulator.	100.0%	0
P09.10	Lower limit value of PID output	100.0% corresponds to Max. output frequency (P00.03) or max. voltage (P04.31) Setting range of P09.09: P09.10–100.0% Setting range of P09.10: -100.0%–P09.09	0.0%	0
P09.11	Feedback offline detection value	Set PID feedback offline detection value, when the detection value is no more than the feedback offline	0.0%	0
P09.12	Feedback offline detection time	detection value, and the duration exceeds the value set in P09.12, the inverter will report "PID feedback offline	1.0s	0

fault", and keypad displays PIDE. Output frequency 11 17 Pop.11 Pop.11 Pide T T T T T T T T T T T T T		
[
Fault output PIDE		
Setting range of P09.11: 0.0–100.0%		
Setting range of P09.12: 0.0–3600.0s 0x0000–0x1111		
Ones: 0: Continue integral control after the frequency reaches		
upper/lower limit		
Stop integral control after the frequency reaches upper/lower limit		
Tens:		
0: The same with the main reference direction		
1: Contrary to the main reference direction		
P09.13 Hundreds: 0x00	01	0
0: Limit based on the max. frequency		
1: Limit based on A frequency		
Thousands:		
0: A+B frequency, acceleration /deceleration of main		
reference A frequency source buffering is invalid		
1: A+B frequency, acceleration/ deceleration of main		
reference A frequency source buffering is valid,		
acceleration and deceleration are determined by		
P08.04 (acceleration time 4).		
0.00–100.00 Low-frequency Low-frequency switching point: 5.00Hz, high-frequency		
P09.14 proportional gain switching point: 10.00Hz (P09.04 corresponds to high-		0
	٠	U
(Kp) frequency parameter), and the middle is the linear interpolation between these two points		
Acceleration/		
P09.15 deceleration time 0.0–1000.0s 0.0	s	0
of PID command		
P09.16 Filter time of PID output 0.000–10.000s 0.00	0s	0
P09.17- Reserved P09.28 variables 0-65536 0		0

P10 grou	p Simple PLC an	d multi-step speed control		
P10.00	Simple PLC mode	of the last section after a single cycle. 2: Cyclic running; the inverter enters the next cycle after completing one cycle until receiving stop command and stops.	0	0
P10.01	Simple PLC memory selection	No memory after power down Hemory after power down; PLC memories its running stage and running frequency before power down.	0	0
P10.02	Multi-step speed 0	Setting range of the frequency in 0 th –15 th sections are	0.0%	0
P10.03	Running time of 0 th step	-100.0–100.0%, 100% corresponds to Max. output frequency P00.03.	0.0s(min)	0
P10.04	Multi-step speed 1	Setting range of the running time in 0 th –15 th sections	0.0%	0
P10.05	Running time of 1st step	are $0.0-6553.5s$ (min), the time unit is determined by P10.37.	0.0s(min)	0
P10.06	Multi-step speed 2	When simple PLC operation is selected, it is required to	0.0%	0
P10.07	Running time of 2 nd step	set P10.02–P10.33 to determine the running frequency and running time of each section.	0.0s(min)	0
P10.08	Multi-step speed 3	Note: The symbol of multi-step speed determines the running direction of simple PLC, and the	0.0%	0
P10.09	Running time of 3 rd step	negative value means reverse running. Deceleration time P10.28 (two sections)	0.0s(min)	0
P10.10	Multi-step speed 4	P10.04 P10.30	0.0%	0
P10.11	Running time of 4 th step	P10.32 Acceleration firme (two sections)	0.0s(min)	0
P10.12	Multi-step speed 5	P10.06	0.0%	0
P10.13	Running time of 5 th step	When selecting multi-step speed running, the multi-step	0.0s(min)	0
P10.14	Multi-step speed 6	speed is within the range of -fmax-fmax, and it can be	0.0%	0
P10.15	Running time of 6 th step	set continuously. The start/stop of multi-step stop is also determined by P00.01.	0.0s(min)	0
P10.16	Multi-step speed 7	MSI350 series inverter can set 16-step speed, which	0.0%	0
P10.17	Running time of	are set by combined codes of multi-step terminals 1–4	0.0s(min)	0

	7 th step	(s	et by S	termir	nal, co	rresp	onc	d to fu	nction	code F	P05.01-	_	
P10.18	Multi-step speed 8	`) 05.06) a		,							0.0%	0
10.10	Running time of	ste	ep spe	ed 15.								0.070	
P10.19	8 th step			1	Output freq] []	uency 3						0.0s(min)	0
P10.20	Multi-step speed 9				P				13/			0.0%	0
P10.21	Running time of 9 th step			erminal 1	ON O	N ON	ON			I DN t		0.0s(min)	0
P10.22	Multi-step speed 10		te	erminal 2	dN	ion	OΝ	ON	ON	N t		0.0%	0
P10.23	Running time of 10 th step			erminal 4		<u> </u>	⊥f		on	□		0.0s(min)	0
P10.24	Multi-step speed 11	ar	hen ter e OFF,	the fr	equer	icy in	put	mode	e is se	by PO	0.06 о	r 0.0%	0
P10.25	Running time of 11 th step	te	00.07. \ rminal 4	4 are	not al	I OF	F, th	ne fre	quency	set b	y multi	0.0s(min)	0
P10.26	Multi-step speed 12	se	ep spe	highe	er thar	that	of	the ke	eypad,	analo			0
P10.27	Running time of 12 th step	Th	eed pu ne relat	ion be	etweer	n terr	nina	al 1, te	ermina	l 2, ter	minal 3	0.0s(min)	0
P10.28	Multi-step speed	Г	nd termi Ferminal 1	OFF	on	OFF	1 NI 10			OFF	ON	0.0%	0
P10.29	Running time of 13 th step	l	Terminal 2 Terminal 3		OFF	ON OFF	ON OF				ON ON	0.0s(min)	0
P10.30	Multi-step speed	1	Terminal 4 Step	OFF 0	OFF 1	OFF 2	OF 3			OFF 6	OFF 7	0.0%	0
P10.31	Running time of 14 th step		Terminal 1 Terminal 2		ON OFF	OFF ON	10	_	+	OFF ON	ON ON	0.0s(min)	0
P10.32	Multi-step speed	H	Terminal 3 Terminal 4		OFF ON	OFF ON	OF ON			ON ON	ON ON	0.0%	0
P10.33	Running time of 15 th step		Step	8	9	10	11	12	2 13	14	15	0.0s(min)	0
P10.34	Acceleration/decel eration time of 0 th		etailed i	llustra	ation is			in the	table	below.	ACC/	0x0000	0
	-7 th step of simple PLC		Function code	Bir	nary	Ste		DEC time 1	DEC time 2	DEC time 3	DEC time 4		
	Acceleration/decel			BIT1	BIT0	C		00	01	10	11		
P10.35	eration time of 8 th - 15 th step of		P10.34	BIT3	BIT2	1		00	01	10	11	0x0000	0
	simple PLC			BIT5	BIT4	2		00	01	10	11		

	T				1						
			BIT7	BIT6	3	00	01	10	11		
			ВІТ9	BIT8	4	00	01	10	11		
			BIT11	BIT10	5	00	01	10	11		
			BIT13	BIT12	6	00	01	10	11		
			BIT15	BIT14	7	00	01	10	11		
			BIT1	BIT0	8	00	01	10	11		
			BIT3	BIT2	9	00	01	10	11		
			BIT5	BIT4	10	00	01	10	11		
		P10.35	BIT7	BIT6	11	00	01	10	11		
		P10.35	BIT9	BIT8	12	00	01	10	11		
			BIT11	BIT10	13	00	01	10	11		
			BIT13	BIT12	14	00	01	10	11		
			BIT15	BIT14	15	00	01	10	11		
		Select c	orrespo	onding	accelei	ration/	decele	ration	time,		
		and ther	conve	rt 16-b	it binar	y num	ber int	to			
		hexadeo	imal nu	umber,	finally,	set co	rrespo	onding			
		function	code.								
		Accelera						•			
		P00.12;								*	
		P08.00 a		,							
		set by F						/dece	eleratio	n	
		time 4 is	•								
		Setting r					15.11				
		0: Resta			•		•		•		
		during r	_	•		-					
		power de	, .				•				
P10.36	DI C restort made	1: Conti		Ū			•	•	•		0
P 10.36	PLC restart mode	running			•			•		•	0
		the runn	`	•	•			, .			
			-			-				•	
		automat frequence	•						•	E	
		•				•				n	
	Multi-step time	0: s; th seconds		mig tir	iie oi	cacii	step	15 COL	ınıeu I	11	
P10.37	unit	1: min;	•	nning 1	time of	each	sten	is co	ınted i	0	0
	Gritt	minutes:		19		Cucii	отор	.5 000	antou I		
P11 grou	Protection para										ı
. II grou	Phase-loss	0x000-0)v111								
P11.00	protection	Ones:	, A I I I							0x110	0
	protection	OHES.									<u> </u>

	T			
		0: Disable software input phase loss protection		
		1: Enable software input phase loss protection		
		Tens:		
		0: Disable output phase loss protection		
		1: Enable output phase loss protection		
		Hundreds:		
		0: Disable hardware input phase loss protection		
		1: Enable hardware input phase loss protection		
	Frequency-drop at	0: Disable		
P11.01	transient power	1: Enable	0	0
	down	1. Eliable		
P11.02	Reserved	0–65535	0	0
1 11.02	variables	0-00000		0
		0: Disable		
		1: Enable		
		DC bus voltage V		
	Overvoltage stall protection	Overvoltage stall		
		threshold		
P11.03			1	0
		Output A Time t		
		frequency		
		Time		
P11.04	Overvoltage stall	120–150% (standard bus voltage) (380V)	136%	0
	protection voltage	120–150% (standard bus voltage) (220V)	120%	
		During accelerated running, as the load is too large, the		
		actual acceleration rate of motor is lower than that of		
		output frequency, if no measures are taken, the inverter		
		may trip due to overcurrent during acceleration.		
	Current-limit	0x00–0x11		
P11.05	selection	Ones: Current-limit action selection	01	0
	Selection	0: Invalid		
		1: Always valid		
		Tens: Hardware current-limit overload alarm selection		
		0: Valid		
		1: Invalid		
		Current-limit protection function detects output current	G model:	
P11.06	Automatic current-	during running, and compares it with the current-limit	160.0%	0
	limit level	level defined by P11.06, if it exceeds the current-limit	P model:	
	1	,,		

		level, the inverter will run at stable frequency during	120.0%	
		accelerated running, or run in decreased frequency		
		during constant-speed running; if it exceeds the current-	(-	
		limit level continuously, the inverter output frequency		
		will drop continuously until reaching lower limit		
		frequency. When the output current is detected to be		
		lower than the current-limit level again, it will continue		
		accelerated running.		
	Ereguency drop			
P11.07	Frequency-drop rate during current limit	Current-limit threshold Output frequency f Time t	10.00 Hz/s	0
		Set frequency Constant Acceleration Speed		
		Setting range of P11.06: 50.0–200.0%		
		Setting range of P11.07: 0.00–50.00Hz/s		
	Inverter or motor	If the inverter or motor output current is larger than the		
P11.08	overload/underloa	overload pre-alarm detection level (P11.09), and the	0x000	0
	d pre-alarm	duration exceeds the overload pre-alarm detection		
		time (P11.10), overload pre-alarm signal will be	G model:	
	Overload pre-	outputted.	150%	
P11.09	alarm detection	Output current	P model:	0
	level	Overload pre-alarm	120%	
		threshold Time t		
P11.10	Overload pre- alarm detection time	Pre-alarm time t Pre-alarm time t Pre-alarm time t Time t	1.0s	0
		Setting range of P11.08:		
		Enable and define overload pre-alarm function of the		
		inverter and motor		
		Setting range: 0x000–0x131		
		Ones:		
		0: Motor overload/underload pre-alarm, relative to rated		

		T		
		motor current;		
		1: Inverter overload/underload pre-alarm, relative to		
		rated inverter current.		
		Tens:		
		0: The inverter continues running after		
		overload/underload alarm;		
		1: The inverter continues running after underload alarm,		
		and stops running after overload fault;		
		2: The inverter continues running after overload alarm,		
		and stops running after underload fault;		
		3: The inverter stops running after overload/underload		
		fault.		
		Hundreds:		
		0: Always detect		
		1: Detect during constant-speed running		
		Setting range of P11.09: P11.11–200%		
		Setting range of P11.10: 0.1–3600.0s		
	Underload pre-	Underload pre-alarm signal will be outputted if the		
P11.11	alarm detection	output current of the inverter or motor is lower than	50%	0
	level	underload pre-alarm detection level (P11.11), and the		
		duration exceeds underload pre-alarm detection time		
	Underload pre-	(P11.12).		
P11.12	alarm detection	Setting range of P11.11: 0– P11.09	1.0s	0
	time	Setting range of P11.12: 0.1–3600.0s		
		This function code is used to set the action of fault		
		output terminals during undervoltage and fault reset.		
		0x00-0x11		
	Fault output	Ones:		
P11.13	terminal action	0: Act during undervoltage fault	0x00	0
	during fault	1: Do not act during undervoltage fault	0,100	
	aamig raam	Tens:		
		0: Act during fault reset		
		1: Do not act during fault reset		
		0.0–50.0%		
P11.14	Speed deviation	This parameter is used to set the speed deviation	10.0%	0
F 11.14	detection value	detection value.	10.070	
		This parameter is used to set the speed deviation		
	Speed deviation	detection time.		
P11.15	detection time	Note: Speed deviation protection will be invalid if	1.0s	0
	detection time	P11.15 is set to 0.0.		
		F11.10 15 Set tO 0.0.		

		♦ Speed		
		Actual detection		
		value		
		Set detection value		
		itti itzi Time t		
		////Running//// Fault outpublEu t1 <t2, continues="" inverter="" running="" so="" t2="P11.15</td" the=""><td></td><td></td></t2,>		
		Setting range: 0.0–10.0s		
	Automatic	Octaing range: 0.0-10.03		
	frequency-	0–1		
P11.16	reduction during	0: Invalid	0	0
	voltage drop	1: Valid		
	Proportional	This parameter is used to set the proportional		
	coefficient of	coefficient of the bus voltage regulator during		
P11.17	voltage regulator	undervoltage stall.	100	0
	during	Setting range: 0–1000		
	undervoltage stall			
	-	This parameter is used to set the integral coefficient of		
	of voltage	the bus voltage regulator during undervoltage stall.		_
P11.18	regulator during	Setting range: 0–1000	40	0
	undervoltage stall			
	Proportional	This parameter is used to set the proportional		
	coefficient of	coefficient of the active current regulator during		
P11.19	current regulator	undervoltage stall.	25	0
	during	Setting range: 0–1000		
	undervoltage stall			
	Integral coefficient	This parameter is used to set the integral coefficient of		
P11.20	of current	the active current regulator during undervoltage stall.	150	0
111.20	regulator during	Setting range: 0–2000	130	
	undervoltage stall			
	Proportional	This parameter is used to set the proportional		
	coefficient of	coefficient of the bus voltage regulator during		
P11.21	voltage regulator	overvoltage stall.	60	0
1	during	Setting range: 0–1000		
	overvoltage stall			
		This parameter is used to set the integral coefficient of		
P11.22	of voltage	the bus voltage regulator during overvoltage stall.	10	0
	regulator during	Setting range: 0–1000		
	overvoltage stall			

P11.23 coefficient of current regulator during overvoltage stall overvoltage stall of current regulator during overvoltage stall overvoltage s		1		1	
P11.23 current regulator during overvoltage stall. P11.24 Integral coefficient of current regulator during overvoltage stall. P11.25 Cenable inverter overload integral over		Proportional	This parameter is used to set the proportional		
during overvoltage stall lintegral coefficient of current regulator during overvoltage stall. P11.24 Integral coefficient of current regulator during overvoltage stall. P11.25 Integral coefficient of current regulator during overvoltage stall. P11.26 Enable inverter overload integral with sparameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26 Reserved variables P12.97 P2 group Parameters of motor 2 P12.00 Type of motor 2 P12.01 Type of motor 2 P12.02 Rated power of asynchronous motor 1: Synchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		coefficient of	coefficient of the active current regulator during		
Integral coefficient of current regulator during overvoltage stall Occupant overvoltage stall Occ	P11.23	current regulator	overvoltage stall.	60	0
Integral coefficient of current regulator during overvoltage stall. P11.24 Integral coefficient of the active current regulator during overvoltage stall. Setting range: 0–2000 0: Disabled 1: Enabled When this parameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the overload integral when this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26—Reserved variables P12 group Parameters of motor 2 P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor 1: Synchronous motor 2 P12.02 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 P12.03 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		during	Setting range: 0–1000		
P11.24 regulator during overvoltage stall. Setting range: 0–2000 Disabled 1: Enabled When this parameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter overload integral value is not reset, and the overload timing value is not reset, and therefore the protection over the inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26- Reserved variables P12.97 Reserved variables P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor P12.02 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. O-65536 O P12.00 Type of motor 2 O: Asynchronous motor P12.01 P12.02 O: Asynchronous motor O: Asynchronous motor O: Depend on model P12.03 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		overvoltage stall			
P11.24 regulator during overvoltage stall 0: Disabled 1: Enabled When this parameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor 1: Synchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		Integral coefficient	This parameter is used to set the integral coefficient of		
regulator during overvoltage stall 0: Disabled 1: Enabled When this parameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor 1: Synchronous motor P12.01 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	D44.04	of current	the active current regulator during overvoltage stall.	050	
P11.25 P11.25 P12.00 P12.00 P12.00 Rated power of asynchronous motor 2 P12.01 Rated power of P12.01 Rated power of asynchronous motor 2 P12.02 Rated prover of P12.03 Rated speed of P12.03 Rated speed of P12.03 Rated speed of P12.03 Rated speed of P12.04 Rated voltage of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2 Rated volt	P11.24	regulator during	Setting range: 0–2000	250	O
P11.25 P11.25 P12.00 P12.00 P12.01 Rated power of asynchronous motor 2 P12.02 Rated frequency P12.02 Rated speed of asynchronous motor 2 Rated voltage of		overvoltage stall			
When this parameter is set to 0, the overload timing value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12 group Parameters of motor 2 P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			0: Disabled		
Value is reset to zero after the inverter is stopped. In this case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter is weakened. When this parameter is set to 1, the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			1: Enabled		
Case, the determination of inverter overload takes more time, and therefore the effective protection over the inverter overload integral when this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			When this parameter is set to 0, the overload timing		
Enable inverter overload integral P11.25 Enable inverter overload integral When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.97 P12.00 P12 group Parameters of motor 2 P12.00 Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			value is reset to zero after the inverter is stopped. In this		
P11.25 overload integral inverter is weakened. When this parameter is set to 1, the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26 Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor P12.01 Rated power of asynchronous motor 2 Rated frequency P12.02 of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of P12.04 Rated voltage of asynchronous motor 2			case, the determination of inverter overload takes more		
overload integral inverter is weakened. When this parameter is set to 1, the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.00 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor P12.01 Rated frequency P12.02 of asynchronous motor 2 Rated frequency P12.02 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of P12.04 Rated voltage of asynchronous motor 2		Enable inverter	time, and therefore the effective protection over the		
When this parameter is set to 1, the overload timing value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26— Reserved variables P12.70 Type of motor 2 P12.00 Type of motor 2 Rated power of asynchronous motor P12.01 Rated power of asynchronous motor 2 Rated frequency P12.02 of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	P11.25	overload integral	,	0	
value is not reset, and the overload timing value is accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26- Reserved variables P12.7 Variables P12.00 Type of motor 2 P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor P12.02 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 P12.03 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			When this parameter is set to 1, the overload timing		
accumulative. In this case, the determination of inverter overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26- Reserved P11.27 variables P12.00 Type of motor 2 P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor 2 P12.02 Rated frequency of asynchronous motor 2 Rated speed of P12.03 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			, ,		
overload takes less time, and therefore the protection over the inverter can be performed more quickly. P11.26- Reserved P11.27			·		
P11.26— Reserved variables 0-65536 0 0 ○ P12 group Parameters of motor 2 P12.00 Type of motor 2 0: Asynchronous motor 1: Synchronous motor 2 Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of P12.01 Rated speed of P12.02 Rated speed of asynchronous motor 2 Rated speed of P12.03 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2			′		
P11.26— Reserved variables 0–65536 0 0 ○ P12 group Parameters of motor 2 0: Asynchronous motor 1: Synchronous motor 2 0: Asynchronous motor 3 0: Asynchronous motor 4 0: Asynchronous motor 4 0: Asynchronous motor 5 0: Asynchronous motor 6 0: Asynchronous motor 6 0: Asynchronous motor 8 0: Asynchronous motor 8 0: Asynchronous motor 8 0: Asynchronous motor 8 0: Asynchronous motor 9					
P12.00 Parameters of motor 2 P12.00 Type of motor 2 P12.01 Rated power of asynchronous motor 2 Rated frequency P12.02 Of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 0 Depend on model on mode	P11.26-	Reserved			
P12.00 Type of motor 2 0: Asynchronous motor 1: Synchronous motor 2 Depend on model P12.01 Rated power of asynchronous motor 2 O.1–3000.0kW Depend on model P12.02 of asynchronous motor 2 O.01Hz–P00.03 (Max. output frequency) S0.00Hz P12.03 Rated speed of asynchronous motor 2 P12.04 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2 O-1200V Depend on model P12.04 P12.04 P12.04 P12.05 P12.06 P12.07 P12.08 P12.09 P12.	P11.27	variables	0–65536	0	0
P12.00 Type of motor 2 1: Synchronous motor Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	P12 grou	p Parameters of	motor 2		
Rated power of asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	D.10.00		0: Asynchronous motor		
P12.01 asynchronous motor 2 Rated frequency of asynchronous motor 2 P12.02 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	P12.00	Type of motor 2	1: Synchronous motor	0	0
P12.01 asynchronous motor 2 Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		Rated power of			
Rated frequency of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2	P12.01	asynchronous	0.1–3000.0kW	•	0
P12.02 of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2 P12.04 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2 P12.04 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2		motor 2		on model	
P12.02 of asynchronous motor 2 Rated speed of asynchronous motor 2 Rated voltage of asynchronous motor 2		Rated frequency			
motor 2 Rated speed of asynchronous motor 2 P12.04 Rated voltage of asynchronous motor 2 Rated voltage of asynchronous motor 2 O-1200V Depend on model Depend on model O model	P12.02		0.01Hz–P00.03 (Max. output frequency)	50.00Hz	0
P12.03 asynchronous motor 2 1–36000rpm Depend on model P12.04 Rated voltage of asynchronous motor 2 0–1200V Depend on model O—1200V Depend on model O—1200V			1 1 7/		
P12.03 asynchronous motor 2 1–36000rpm Depend on model P12.04 Rated voltage of asynchronous motor 2 0–1200V Depend on model O—1200V Depend on model O—1200V		Rated speed of			
P12.04 Rated voltage of asynchronous motor 2 On model Depend on model on model	P12.03		1–36000rpm	Depend	0
P12.04 Rated voltage of asynchronous motor 2 0—1200V Depend on model		•		on model	
P12.04 asynchronous 0–1200V Depend on model on model					
motor 2 on model	P12.04		0–1200V		0
				on model	
	P12.05	Rated current of	0.8–6000.0A	Depend	0

	asynchronous		on model	
	motor 2		on model	
	Stator resistance			
P12.06	of asynchronous	0.001–65.535Ω	Depend	0
12.00	motor 2	0.001-03.3332	on model	0
	Rotor resistance			
P12.07	of asynchronous	0.001–65.535Ω	Depend	0
1 12.01	motor 2	0.001 00.0001	on model	0
	Leakage			
	inductance of		Depend	
P12.08	asynchronous	0.1–6553.5mH	on model	0
	motor 2			
	Mutual inductance			
P12.09	of asynchronous	0.1–6553.5mH	Depend	0
	motor 2		on model	
	No-load current of		Denend	
P12.10	asynchronous	0.1–6553.5A	Depend on model	0
	motor 2		on model	
	Magnetic			
	saturation			
P12.11	coefficient 1 of	0.0–100.0%	80%	0
1 12.11	iron core of		0070)
	asynchronous			
	motor 2			
	Magnetic			
	saturation			
P12.12	coefficient 2 of	0.0–100.0%	68%	0
	iron core of			
	asynchronous			
	motor 2			
	Magnetic			
	saturation			
P12.13	coefficient 3 of	0.0–100.0%	57%	0
	iron core of asynchronous			
	motor 2			
	Magnetic			
	saturation			
P12.14	coefficient 4 of	0.0–100.0%	40%	0
	iron core of			
	HOH COIC OI			

	asynchronous			
	motor 2			
	Rated power of		Depend	
P12.15	synchronous	0.1–3000.0kW	on model	0
	motor 2		on model	
	Rated frequency			
P12.16	of synchronous	0.01Hz–P00.03 (Max. output frequency)	50.00Hz	0
	motor 2			
	Number of pole			
P12.17	pairs of	1–128	2	0
1 12.17	synchronous	1 120	_	0
	motor 2			
	Rated voltage of		Depend	
P12.18	synchronous	0–1200V	on model	0
	motor 2		on model	
	Rated voltage of		Depend	
P12.19	synchronous	0.8–6000.0A	on model	0
	motor 2		on model	
	Stator resistance		Depend	
P12.20	of synchronous	0.001–65.535Ω	on model	0
	motor 2			
	Direct-axis			
P12.21	inductance of	0.01–655.35mH	Depend	0
	synchronous		on model	
	motor 2			
	Quadrature-axis			
P12.22	inductance of	0.01–655.35mH	Depend	0
	synchronous		on model	
	motor 2			
	Counter-emf			
P12.23	constant of	0–10000V	300	0
	synchronous			
	motor 2			
P12.24	Reserved	0-0xFFFF	0x0000	•
P12.25	Reserved	0%–50% (of the rated current of the motor)	10%	•
	Overload	0: No protection		
P12.26	protection of	1: Common motor (with low-speed compensation)	2	0
1 12.20	motor 2	2: Frequency-variable motor (without low-speed		
	1110101 2	compensation)		

				, ,
		Motor overload multiples M = lout/(ln×K)		
		In is rated motor current, lout is inverter output current,		
		K is motor overload protection coefficient.		
		The smaller the K, the larger the value of M, the easier		
		the protection.		
		if M is 116%, protection will be applied when motor		
	Overload	overloads for 1h; if M is 200%, protection will be applied		
	protection	when motor overloads for 60s; if M is no less than		
P12.27	coefficient of	400%, protection will be applied immediately.	100.0%	0
	motor 2	↑ Time t		
	motor 2	1h		
		\ \ \		
		1min		
		Motor overload multiples		
		116 % 200 %		
		Setting range: 20.0%–120.0%		
	Power display			
P12.28	calibration	0.00-3.00	1.00	0
F 12.20	coefficient of	10.00-3.00	1.00	0
	motor 2			
		0: Display based on the motor type; under this mode,		
	Parameter display of motor 2	only parameters related to current motor type will be		
P12.29		displayed.	0	0
		1: Display all; under this mode, all the parameters will		
		be displayed.		
P12.30	System inertia of	0–30.000kgm²	0.000	0
P12.30	motor 2	10–30.000kgm-	0.000	0
P12.31-	Reserved	0–65535	0	0
P12.32	variables	0-0000	U	O
P13 grou	p Control parame	eters of synchronous motor		
		This parameter is used to set the reduction rate of the		
	Reduction rate of	input reactive current. When the active current of the		
	the injection	synchronous motor increases to some extent, the input		
P13.00	current of	reactive current can be reduced to improve the power	80.0%	0
	synchronous	factor of the motor.		
	motor	Setting range: 0.0%–100.0% (of the rated current of the		
		motor)		
	Initial pole	0: Disabled		
P13.01	detection mode	1: In pulse detection mode	0	0
		1 1		

		2: In pulse detection mode		
P13.02	Input current 1	Input current is the pole position orientation current; input current 1 is valid within the lower limit of input current switch-over frequency threshold. If users need to increase the starting torque, increase the value of this function code properly. Setting range: 0.0%—100.0% (rated motor current)	20.0%	0
P13.03	Input current 2	Input current is the pole position orientation current; input current 2 is valid within the upper limit of input current switch-over frequency threshold, and users do not need to change input current 2 under common situations. Setting range: 0.0%—100.0% (rated motor current)	10.0%	0
P13.04	Switch-over frequency of input current	0.00Hz–P00.03 (Max. output frequency)	10.00Hz	0
P13.05	High-frequency superposition frequency (reserved)	200Hz-1000Hz	500Hz	0
P13.06	Pulse current setting	This parameter is used to set the pulse current threshold when the initial magnetic pole position is detected in the pulse mode. The value is a percentage in relative to the rated current of the motor. Setting range: 0.0–300.0% (of the rated voltage of the motor)		0
P13.07	Reserved variables	0.0–400.0	0.0	0
P13.08	Control parameter	0-0xFFFF	0	0
P13.09	Control parameter 2	This parameter is used to set the frequency threshold for enabling the counter-electromotive force phase-locked loop in SVC 0. When the running frequency is lower than the value of this parameter, the phase-locked loop is disabled; and when the running frequency is higher than that, the phase-locked loop is enabled. Setting range: 0–655.35	2.00	0
P13.10	Reserved variables	0.0–359.9	0.0	0

		_		
P13.11	Maladjustment detection time	This parameter is used to adjust the responsiveness of anti-maladjustment function. If the load inertia is large, increase the value of this parameter properly, however, the responsiveness may slow down accordingly. Setting range: 0.0–10.0s	0.5s	0
P13.12	High-frequency compensation coefficient of synchronous motor	This parameter is valid when the motor speed exceeds the rated speed. If motor oscillation occurred, adjust this parameter properly. Setting range: 0.0–100.0%	0.0	0
P13.13-	Reserved	0–65535	0	0
P13.19	variables	0-65555	U	O
P14 group Serial communication function				
P14.00	Local communication address	Setting range: 1–247 When the master is writing frames, and the slave communication address is set to 0, it is the broadcast communication address, and all the slaves on the MODBUS bus will accept this frame, but the slave never responds. Local communication address is unique in the communication network, which is the basis for point-to-point communication between the upper computer and the inverter. Note: The slave address cannot be set to 0.	1	0
P14.01	Communication baud rate setup	This parameter is used to set the data transmission speed between upper computer and the inverter. 0: 1200BPS 1: 2400BPS 2: 4800BPS 3: 9600BPS 4: 19200BPS 5: 38400BPS 6: 57600BPS 7: 115200BPS Note: Baud rate of the upper computer must be the same with the inverter; otherwise, communication cannot be performed. The larger the baud rate, the faster the communication speed.	4	0
P14.02	Data bit check	The data format of upper computer must be the same	1	0
1 17.02	Jaka Sit Official	aata format of appor sompator must be the same	'	$\overline{}$

	setup	with the inverter; otherwise, communication cannot be		
	setup	performed.		
		0: No parity check (N, 8, 1) for RTU		
		, , ,		
		1: Even parity (E, 8, 1) for RTU		
		2: Odd parity (O, 8, 1) for RTU		
		3: No parity check (N, 8, 2) for RTU		
		4: Even parity (E, 8, 2) for RTU		
		5: Odd parity (O, 8, 2) for RTU		
		0–200ms		
		It refers to the time interval from when the data is		
		received by the inverter to the moment when the data is		
	Communication	sent to the upper computer. If the response delay is less		
P14.03	response delay	than the system processing time, the response delay	5	0
	response delay	will be subject to system processing time; if the		
		response delay is longer than the system processing		
		time, data will be sent to the upper computer at a delay		
		after data process is done by system.		
		0.0 (invalid) -60.0s		
		This parameter will be invalid if it is set to 0.0;		
		When it is set to a non-zero value, if the time interval		
		between current communication and the next		
	Communication timeout period	communication exceeds the communication timeout		
P14.04		period, the system will report "485 communication	0.0s	0
		fault" (CE).		
		Under common situations, it is set to 0.0. In systems		
		which have continuous communication, users can		
		monitor the communication condition by setting this		
		parameter.		
		0: Alarm and coast to stop		
		1: Do not alarm and continue running		
	Transmission	2: Do not alarm and stop as per the stop mode		
P14.05	error processing	(under communication control mode only)	0	0
	one presessing	3: Do not alarm and stop as per the stop mode		
		(under all control modes)		
		0x00-0x11		
		Ones:		
	Communication	0: Write operation has response		
P14.06		Write operation has response Write operation has no response	0x00	0
	processing action	Tens:		
		0: Communication password protection is invalid		

		1: Communication password protection is valid			
P14.07-	Reserved	- Communication passing a procession to valid			
P14.07=	variables	0–65535	0	•	
P15 group	p Functions of Co	ommunication extension card 1			
P15.00– P15.27	See the operation	manual of communication extension card for details			
P15.28	Master/slave CAN	0–127	1	0	
	communication				
	address				
P15.29	Master/slave CAN	0: 50Kbps	2	0	
	communication	1: 100 Kbps			
	baud rate	2: 125Kbps			
	selection	3: 250Kbps			
		4: 500Kbps			
		5: 1M bps			
P15.30	Master/slave CAN	0.0 (invalid)–300.0s	0.0s	0	
	communication				
	timeout period				
P15.31-	See the operation manual of communication extension card for details				
P15.69	See the operation	manual of communication extension card for details			
P16 grou	p Functions of co	ommunication extension card 2			
P16.00-	See the operation	manual of communication extension card for details			
P16.23			I		
	Identification time	0.0-600.0s			
P16.24	for the extension	If it is set to 0.0, identification fault will not be detected	0.0s	0.0	
	card in card slot 1				
	Identification time	0.0-600.0s			
P16.25	for the extension	If it is set to 0.0, offline fault will not be detected	0.0s	0.0	
	card in card slot 2	in to 3 Set to 0.0, Simile laute will not be detected			
	Identification time	0.0-600.0s			
P16.26	for the extension	If it is set to 0.0, offline fault will not be detected	0.0s	/	
	card in card slot 3	ii it is set to 0.0, offinite fault will flot be detected			
1	Communication				
P16.27	timeout period of	0.0–600.0s	0.0s	,	
10.27	extension card in	If it is set to 0.0, offline fault will not be detected	0.05	,	
	card slot 1				
1	Communication	0.0.600.00			
P16.28	timeout period of	0.0–600.0s	0.0s	/	
	extension card in	If it is set to 0.0, offline fault will not be detected			

	card slot 2			
	Communication			
P16.29	timeout period of	0.0–600.0s If it is set to 0.0, offline fault will not be detected	0.0s	1
P16.30– P16.69	See the operation	manual of communication extension card for details		
P17 grou	p State-check fui	nctions		
P17.00	Set frequency	Display current set frequency of the inverter. Range: 0.00Hz–P00.03	50.00Hz	•
P17.01	Output frequency	Display current output frequency of the inverter. Range: 0.00Hz–P00.03	0.00Hz	•
P17.02	Ramps reference frequency	Display current ramps reference frequency of the inverter. Range: 0.00Hz–P00.03	0.00Hz	•
P17.03	Output voltage	Display current output voltage of the inverter. Range: 0–1200V	0V	•
P17.04	Output current	Display the valid value of current output current of the inverter. Range: 0.0–5000.0A	0.0A	•
P17.05	Motor speed	Display current motor speed. Range: 0–65535RPM	0 RPM	•
P17.06	Torque current	Display current torque current of the inverter. Range: -3000.0–3000.0A	0.0A	•
P17.07	Exciting current	Display current exciting current of the inverter. Range: -3000.0–3000.0A	0.0A	•
P17.08	Motor power	Display current motor power; 100% relative to rated motor power, positive value is motoring state, negative value is generating state. Range: -300.0–300.0% (relative to rated motor power)	0.0%	•
P17.09	Motor output torque	Display current output torque of the inverter; 100% relative to rated motor torque, during forward running, positive value is motoring state, negative value is generating state, during reverse running, positive value is generating state, negative value is motoring state. Range: -250.0–250.0%	0.0%	•
P17.10	Estimated motor frequency	The estimated motor rotor frequency under open-loop vector condition. Range: 0.00– P00.03	0.00Hz	•

P17.11	DC bus voltage	Display current DC bus voltage of the inverter. Range: 0.0–2000.0V	0V	•
P17.12	Digital input terminal state	Display current digital input terminal state of the inverter. 0000-03F Corresponds to HDIB, HDIA, S4, S3, S2 and S1 respectively	0	•
P17.13	Digital output terminal state	Display current digital output terminal state of the inverter. 0000–000F Corresponds to R02, RO1, HDO and Y1 respectively	0	•
P17.14	Digital adjustment variable	Display the regulating variable by UP/DOWN terminals of the inverter. Range: 0.00Hz–P00.03	0.00Hz	•
P17.15	Torque reference value	Relative to percentage of the rated torque of current motor, display torque reference. Range: -300.0%-300.0% (rated motor current)	0.0%	•
P17.16	Linear speed	0–65535	0	•
P17.17	Reserved variables	0–65535	0	•
P17.18	Count value	0–65535	0	•
P17.19	Al1 input voltage	Display input signal of Al 1 Range: 0.00–10.00V	0.00V	•
P17.20	Al2 input voltage	Display input signal of Al2 Range: -10.00V–10.00V	0.00V	•
P17.21	HDIA input frequency	Display input frequency of HDIA Range: 0.000–50.000kHz	0.000 kHz	•
P17.22	HDIB input frequency	Display input frequency of HDIB Range: 0.000–50.000kHz	0.000 kHz	•
P17.23	PID reference value	Display PID reference value Range: -100.0–100.0%	0.0%	•
P17.24	PID feedback value	Display PID feedback value Range: -100.0–100.0%	0.0%	•
P17.25	Motor power factor	Display the power factor of current motor. Range: -1.00–1.00	1.00	•
P17.26	Current running time	Display current running time of the inverter. Range: 0–65535min	0m	•
P17.27	Simple PLC and current step	Display simple PLC and current step number of multi- step speed	0	•

	number of multi-	Range: 0–15		
	step speed			
P17.28	Motor ASR controller output	Display the speed loop ASR controller output value under vector control mode, relative to the percentage of rated torque of the motor. Range: -300.0%-300.0% (rated motor current)	0.0%	•
P17.29	Pole angle of open-loop synchronous motor	Display initial identification angle of synchronous motor Range: 0.0–360.0	0.0	•
P17.30	Phase compensation of synchronous motor	Display phase compensation of synchronous motor Range: -180.0–180.0	0.0	•
P17.31	High-frequency superposition current of synchronous motor	0.0%–200.0% (rated motor current)	0.0	•
P17.32	Motor flux linkage	0.0%–200.0%	0.0%	•
P17.33	Exciting current reference	Display the exciting current reference value under vector control mode Range: -3000.0–3000.0A	0.0A	•
P17.34	Torque current reference	Display torque current reference value under vector control mode Range: -3000.0-3000.0A	0.0A	•
P17.35	AC incoming current	Display the valid value of incoming current on AC side Range: 0.0–5000.0A	0.0A	•
P17.36	Output torque	Display output torque value, during forward running, positive value is motoring state, negative value is generating state; during reverse running, positive value is generating state, negative value is motoring state. Range: -3000.0Nm-3000.0Nm	0.0 N m	•
P17.37	Motor overload count value	0–65535	0	•
P17.38	Process PID output	-100.0%-100.0%	0.00%	•
P17.39	Parameter download wrong	0.00–99.00	0.00	•

	function code			
P17.40	Motor control mode	Ones: Control mode 0: Vector 0 1: Vector 1 2: SVPWM control 3: VC Tens: Control state 0: Speed control 1: Torque control Hundreds: Motor number 0: Motor 1 1: Motor 2	2	•
P17.41	Upper limit of the torque when motoring	0.0%-300.0% (rated motor current)	180.0%	•
P17.42	Upper limit of brake torque	0.0%-300.0% (rated motor current)	180.0%	•
P17.43	Upper limit frequency of forward running of torque control	0.00-P00.03	50.00Hz	•
P17.44	Upper limit frequency of reverse running of torque control	0.00-P00.03	50.00Hz	•
P17.45	Inertia compensation torque	-100.0%-100.0%	0.0%	•
P17.46	Friction compensation torque	-100.0%-100.0%	0.0%	•
P17.47	Motor pole pairs	0–65535	0	•
P17.48	Inverter overload count value	0–65535	0	•
P17.49	Frequency set by A source	0.00-P00.03	0.00Hz	•
P17.50	Frequency set by B source	0.00-P00.03	0.00Hz	•
P17.51	PID proportional	-100.0%—100.0%	0.00%	•

	output			
P17.52	PID integral output	-100.0%—100.0%	0.00%	•
P17.53	PID differential output	-100.0%–100.0%	0.00%	•
P17.54– P17.63	Reserved variables	0–65535	0	•
P18 grou	p Closed-loop co	entrol state check		
P18.00	Actual frequency of encoder	The actual-measured encoder frequency; the value of forward running is positive; the value of reverse running is negative. Range: -999.9–3276.7Hz	0.0Hz	•
P18.01	Encoder position count value	Encoder count value, quadruple frequency, Range: 0–65535	0	•
P18.02	Encoder Z pulse count value	Corresponding count value of encoder Z pulse. Range: 0–65535	0	•
P18.03	High bit of position reference value	High bit of position reference value, zero out after stop. Range: 0–30000	0	•
P18.04	Low bit of position reference value	Low bit of position reference value, zero out after stop. Range: 0–65535	0	•
P18.05	High bit of position feedback value	High bit of position feedback value, zero out after stop. Range: 0–30000	0	•
P18.06	Low bit of position feedback value	Low bit of position feedback value, zero out after stop. Range: 0–65535	0	•
P18.07	Position deviation	Deviation between current reference position and actual running position. Range: -32768–32767	0	•
P18.08	Position of position reference point	Position of reference point of Z pulse when the spindle stops accurately. Range: 0–65535	0	•
P18.09	Current position setup of spindle	Current position setup when the spindle stops accurately. Range: 0–359.99	0.00	•
P18.10	Current position when spindle stops accurately	Current position when spindle stops accurately. Range: 0–65535	0	•
P18.11	Encoder Z pulse	Z pulse direction display. When the spindle stops	0	•

	direction	accurately, there may be a couple of pulses' error		
		between the position of forward and reverse orientation,		
		which can be eliminated by adjusting Z pulse direction		
		of P20.02 or exchanging phase AB of encoder.		
		0: Forward		
		1: Reverse		
D40.40	Encoder Z pulse	Reserved.	0.00	
P18.12	angle	Range: 0.00-359.99	0.00	•
	Encoder Z pulse	Reserved.		
P18.13	error times	Range: 0–65535	0	•
	High bit of	<u> </u>		
P18.14	encoder pulse	0–65535	0	•
	count value			
	Low bit of encoder			
P18.15	pulse count value	0–65535	0	•
	Reserved			
P18.16	variables	0–65535	0	•
	variables	Pulse command (A2, B2 terminal) is converted to the		
	Pulse command	set frequency, and it is valid under pulse position mode		
P18.17		, , ,	0.00Hz	•
P18.17	frequency	and pulse speed mode.		
		Range: 0–655.35Hz		
		Pulse command (A2, B2 terminal) is converted to the		
P18.18	Pulse command	set frequency, and it is valid under pulse position mode	0.00Hz	•
	feedforward	and pulse speed mode.		
		Range: 0–655.35Hz		
	Position regulator	The output frequency of the position regulator during		_
P18.19	output	position control.	0	•
	·	Range: 0–65535		
P18.20	Count value of	Count value of resolver.	0	•
	resolver	Range: 0-65535	-	_
		The pole position angle read according to the resolver-		
P18.21	Resolver angle	type encoder.	0.00	•
		Range: 0.00–359.99		
	Pole angle of			
P18.22	closed-loop	Current pole position.	0.00	
F 10.22	synchronous	Range: 0.00–359.99	0.00	
	motor			<u> </u>
D40.00	State control word	0.05505		
P18.23	3	0–65535	0	•

	High bit of count			
P18.24	value of pulse	0–65535	0	•
	reference			
	Low bit of count			
P18.25	value of pulse	0–65535	0	•
	reference			
		It is the drive ratio (speed ratio) between the mounting		
P18.26	Spindle reduction	shaft and the spindle of the encoder when spindle stops	0.000	•
1 10.20	ratio	accurately.	0.000	
		Range: 0.000–65.535		
P18.27	Encoder UVW	0–7	0	
1 10.27	sector	0-1	0	
	Encoder PPR			
P18.28	(pulse-per-	0–65535	0	•
	revolution) display			
	Angle			
	compensation			
P18.29	value of	-180.0–180.0	0.00	•
	synchronous			
	motor			
P18.30	Reserved	0–65535	0	•
1 10.00	variables	0 00000		
P18.31	Pulse reference Z	0–65535	0	•
1 10.01	pulse value	0 00000		
P18.32-	Reserved	0–65535	0	•
P18.35	variables	0 00000		
P19 group	Extension card	state check		
		0–65535		
		0: No card		
		1: PLC programmable card		
		2: I/O card		
		3: Incremental PG card		
P19.00	State of card slot	4: Incremental PG card with UVW	0	
1 13.00	1	5: Ethernet communication card	U	
		6: DP communication card		
		7: Bluetooth card		
		8: Resolver PG card		
		9: CANopen communication card		
		10: WIFI card		

	T		1	
		11: Profinet communication card		
		12: Sine/Cosine PG card without CD signal		
		13: Sine/Cosine PG card with CD signal		
		14: Absolute encoder PG card		
		15: CAN master/slave communication card		
		16: MODBUS communication card		
		17: EtherCat communication card		
		18: BacNet communication card		
		19: DeviceNet communication card		
		0–65535		
		0: No card		
		1: PLC programmable card		
		2: I/O card		
		3: Incremental PG card		
		4: Incremental PG card with UVW		
		5: Ethernet communication card		
		6: DP communication card		
	State of card slot 2	7: Bluetooth card		
		8: Resolver PG card		
P19.01		9: CANopen communication card	0	•
		10: WIFI card		
		11: Profinet communication card		
		12: Sine/Cosine PG card without CD signal		
		13: Sine/Cosine PG card with CD signal		
		14: Absolute encoder PG card		
		15: CAN master/slave communication card		
		16: MODBUS communication card		
		17: EtherCat communication card		
		18: BacNet communication card		
		19: DeviceNet communication card		
		0–65535		
		0: No card		
		1: PLC programmable card		
		2: I/O card		
D40.00	State of card slot	3: Incremental PG card		
P19.02	3	4: Incremental PG card with UVW	0	_
1		5: Ethernet communication card		
		6: DP communication card		
		7: Bluetooth card		
		8: Resolver PG card		

	T			
		9: CANopen communication card		
		10: WIFI card		
		11: Profinet communication card		
		12: Sine/Cosine PG card without CD signal		
		13: Sine/Cosine PG card with CD signal		
		14: Absolute encoder PG card		
		15: CAN master/slave communication card		
		16: MODBUS communication card		
		17: EtherCat communication card		
		18: BacNet communication card		
		19: DeviceNet communication card		
	Software version of			
P19.03	the extension card	0.00–655.35	0.00	•
	in card slot 1			
	Software version of			
P19.04	the extension card	0.00–655.35	0.00	•
	in card slot 2			
	Software version of			
P19.05	the extension card	0.00–655.35	0.00	•
	in card slot 3			
	Input state of			
P19.06	extension I/O card	0-0xFFFF	0	•
	terminals			
	Output state of			
P19.07	extension I/O card	0-0xFFFF	0	•
	terminals			
	HDI3 input		0.000	
P19.08	frequency of	0.000–50.000kHz	0.000 kHz	•
	extension I/O card		KIIZ	
	Al3 input voltage			
P19.09	of extension I/O	0.00-10.00V	0.00V	•
	card			
P19.10-	Reserved	0 65535	0	
P19.39	variables	0–65535	U	
P20 grou	p Encoder of mo	tor 1		
		0: Incremental encoder		
	Encoder type	1: Resolver-type encoder		
P20.00	display	2: Sin/Cos encoder	0	•
	. ,	3: Endat absolute encoder		
		i e e e e e e e e e e e e e e e e e e e		

P20.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one circle. Setting range: 0–60000	1024	0
P20.02	Encoder direction	Ones: AB direction 0: Forward 1: Reverse Tens: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward 1: Reverse	0x000	0
P20.03	Detection time of encoder offline fault	The detection time of encoder offline fault. Setting range: 0.0–10.0s	1.0s	0
P20.04	Detection time of encoder reversal fault	Detection time of encoder reversal fault. Setting range: 0.0–100.0s	0.8s	0
P20.05	Filter times of encoder detection	Setting range: 0x00–0x99 Ones: Low-speed filter time, corresponds to 2^(0–9)×125us. Tens: High-speed filter times, corresponds to 2^(0–9)×125us.	0x33	0
P20.06	Speed ratio between encoder mounting shaft and motor	Users need to set this parameter when the encoder is not installed on the motor shaft and the drive ratio is not 1. Setting range: 0.001–65.535	1.000	0
P20.07	Control parameters of synchronous motor	Bit0: Enable Z pulse calibration Bit1: Enable encoder angle calibration Bit2: Enable SVC speed measurement Bit3: Select resolver speed measurement mode Bit4: Z pulse capture mode Bit5: Do not detect encoder initial angle in v/f control Bit6: Enable CD signal calibration Bit7: Disable sin/cos sub-division speed measurement Bit8: Do not detect encoder fault during autotuning Bit9: Enable Z pulse detection optimization Bit10: Enable initial Z pulse calibration optimization Bit12: Clear Z pulse arrival signal after stop	0x3	0

			ı	
P20.08	Enable Z pulse offline detection	0x00-0x11 Ones: Z pulse 0: Do not detect 1: Enable Tens: UVW pulse (for synchronous motor) 0: Do not detect 1: Enable	0x10	0
P20.09	Initial angle of Z pulse	Relative electric angle of encoder Z pulse and motor pole position. Setting range: 0.00–359.99	0.00	0
P20.10	Initial angle of the pole	Relative electric angle of encoder position and motor pole position. Setting range: 0.00–359.99	0.00	0
P20.11	Autotuning of initial angle of pole	 0–3 1: Rotary autotuning (DC brake) 2: Static autotuning (suitable for resolver-type encoder, sin/cos with CD signal feedback) 3: Rotary autotuning (initial angle identification) 	0	0
P20.12	Speed measurement optimization selection	0: No optimization 1: Optimization mode 1 2: Optimization mode 2	1	0
P20.13	CD signal zero offset gain	0–65535	0	0
P20.14	Encoder type selection	Ones: Incremental encoder 0: without UVW 1: with UVW Tens: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	0
P20.15	Speed measurement mode	PG card Is local; realized by HDIA and HDIB; supports incremental 24V encoder only	0	0
P20.16	Frequency- division coefficient	0–255 When this parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P20.17	Pulse filer processing	0x0000–0xffff Bit0: Enable/disable encoder input filter 0: No filter 1: Filter	0x0011	0

		Bit1: Encoder signal filter mode (set Bit0 or Bit2 to 1)		
		0: Self-adaptive filter		
		1: Use P20.18 filter parameters		
		Bit2: Enable/disable encoder frequency-division output		
		filter		
		0: No filter		
		1: Filter		
		Bit3: Reserved		
		Bit4: Enable/disable pulse reference filter		
		0: No filter		
		1: Filter		
		Bit5: Pulse reference filter mode (valid when Bit4 is set		
		to 1)		
		0: Self-adaptive filter		
		1: Use P20.19 filter parameters		
		Bit6: Frequency-divided output source setting		
		0: Encoder signals		
		1: Pulse reference signals		
		Bits7–15: Reserved		
		0–63		
P20.18	Encoder pulse	The filtering time is P20.18×0.25 µs. The value 0 or 1	10	0
	filter width	indicates 0.25 μs.		
	D	0–63		
P20.19	Pulse reference	The filtering time is P20.18×0.25 µs. The value 0 or 1	10	0
	filter width	indicates 0.25 μs.		
B00.00	Pulse number of		1001	
P20.20	pulse reference	0–65535	1024	0
	Enable angle			
B06.64	compensation of			
P20.21	synchronous	0–1	0	0
	motor			
	Switch-over			
	frequency	0.000.0014		
D00 00	threshold of	0–630.00Hz	4.0011	
P20.22	speed	Note: This parameter is valid only when P20.12 is set	1.00Hz	0
	measurement	to 0.		
	mode			
P20.23-	Reserved			
P20.24	variables	0–65535	0	0
		· ·		·

P21 group	p Position contro	ol		
		Ones: Control mode selection		
		0: Speed control		
		1: Position control		
		Tens: Position command source		
		0: Pulse string		
		1: Digital position		
		2: Positioning of photoelectric switch during stop		
		Hundreds: Position feedback source (reserved, fixed to		
		channel P)		
		0: PG1		
		1: PG2		
		Thousands: servo mode		
P21.00	Positioning mode	Bit0: Position deviation mode	0x0000	0
		0: No deviation		
		1: With deviation		
		Bit1: Enable/disable servo		
		0: Disable (The servo can be enabled by terminals.)		
		1: Enable		
		Bit2: (reserved)		
		Note: In the pulse string or spindle positioning mode,		
		the inverter enters the servo operation mode when		
		there is a valid servo enabling signal. If there is no servo		
		enabling signal, the inverter enter the servo operation		
		mode only after it receives a forward running or reverse		
		running command.		
		Ones: Pulse mode		
		0: A/B quadrature pulse; A precedes B		
		1: A: PULSE; B: SIGN		
		If channel B is of low electric level, the edge counts up;		
		if channel B is of high electric level, the edge counts		
		down.		
P21.01	Pulse command	2: A: Positive pulse	0x0000	0
1 21.01	mode	Channel A is positive pulse; channel B needs no wiring	ONOCCO	
		3: A\B dual-channel pulse; channel A pulse edge counts		
		up, channel B pulse edge counts down		
		Tens: Pulse direction		
		Bit0: Set pulse direction		
		0: Forward		
		1: Reverse		

	T			
		Bit1: Set pulse direction by running direction		
		0: Disable, and BIT0 is valid;		
		1: Enable		
		Hundreds: Pulse/direction frequency-doubling		
		selection (reserved)		
		0: No frequency-doubling		
		1: Frequency-doubling		
		Thousands: Pulse control selection		
		Bit0: Pulse filter selection		
		0: Inertia filter		
		1: Average moving filter		
		Bit1: Overspeed control		
		0: No control		
		1: Control		
P21.02	APR gain 1	The two automatic position regulator (APR) gains are	20.0	0
	-	switched based on the switching mode set in P21.04.		
		When the spindle orientation function is used, the gains		
		are switched automatically, regardless of the setting of		_
P21.03	APR gain 2	P21.04. P21.03 is used for dynamic running, and	30.0	0
		P21.02 is used for maintaining the locked state.		
		Setting range: 0.0–400.0		
		This parameter is used to set the APR gain switching		
		mode. To use torque command-based switching, you		
		need to set P21.05; and to use speed command-based		
504.04	Switching mode of	switching, you need to set P21.06.		
P21.04	position loop gain	0: No switching	0	0
		2: Torque command		
		3: Speed command		
		3–5: Reserved		
	Torque command			
	level during			
P21.05	position gain	0.0-100.0% (rated motor torque)	10.0%	0
	switch-over			
	Speed command			
	level during			
P21.06	position gain	0.0-100.0% (rated motor speed)	10.0%	0
	switch-over			
	Smooth filter	The smooth filter coefficient during position gain switch-		
P21.07	coefficient during	over.	5	0
	gain switch-over	Setting range: 0–15		
L				

P21.08	Output limit of position controller	The output limit of position regulator, if the limit value is 0, position regulator will be invalid, and no position control can be performed, however, speed control is available. Setting range: 0.0–100.0% (Max. output frequency P00.03)	20.0%	0
P21.09	Completion range of positioning	When the position deviation is less than P21.09, and the duration is larger than P21.10, positioning completion signal will be outputted. Setting range: 0–1000	10	0
P21.10	Detection time for positioning completion	0.0–1000.0ms	10.0ms	0
P21.11	Numerator of position command ratio	Electronic gear ratio, used to adjust the corresponding relation between position command and actual running displacement. Setting range: 1–65535	1000	0
P21.12	Denominator of position command ratio	Setting range: 1–65535	1000	0
P21.13	Position feedforward gain	0.00–120.00% For pulse string reference only (position control)	100.00	0
P21.14	Position feedforward filter time constant	0.0–3200.0ms For pulse string reference only (position control)	3.0ms	0
P21.15	Position command filter time constant	The position feedforward filter time constant during pulse string positioning. 0.0–3200.0ms	0.0ms	0
P21.16	Digital positioning mode	Bit0: Positioning mode selection 0: Relative position 1: Absolute position (home) (reserved) Bit1: Positioning cycle selection 0: Cyclic positioning by terminals 1: Automatic cyclic positioning Bit2: Cycle mode 0: Continuous 1: Repetitive (supported by automatic cyclic positioning only) Bit3: P21.17 digital setting mode 0: Incremental	0	0

	1			
		1: Position type (do not support continuous mode)		
		Bit4: Home searching mode		
		0: Search for the home just once		
		1: Search for the home during each run		
		Bit5: Home calibration mode		
		0: Calibrate in real time		
		1: Single calibration		
		Bit6: Positioning completion signal selection		
		0: Valid during the time set by P21.25 (Hold time of		
		positioning completion signal)		
		1: Always valid		
		Bit7: Initial positioning selection (for cyclic positioning		
		by terminals)		
		0: Invalid (do not rotate)		
		1: Valid		
		Bit8: Positioning enable signal selection (for cyclic		
		positioning by terminals only; positioning function is		
		always enabled for automatic cyclic positioning)		
		0: Pulse signal		
		1: Level signal		
		Bit9: Position source		
		0: P21.17 setting		
		1: PROFIBUS/CANopen setting		
		Bit10-11: Reserved		
		Bit12: Positioning curve selection (reserved)		
		0: Straight line		
		1: S curve		
		Set digital positioning position;		
P21.17	Position digital	Actual position=P21.17×P21.11/P21.12	0	0
	reference	0–65535		
		0: Set by P21.19		
		1: Set by Al1		
	Positioning speed	2: Set by Al2		
P21.18	setup selection	3: Set by Al3	0	0
	·	4: Set by high speed pulse HDIA		
		5: Set by high speed pulse HDIB		
P21.19	Positioning speed digits	0–100.0% max. frequency	20.0%	0
		Set the acceleration/deceleration time of positioning		
P21.20	of positioning	process.	3.00s	0
	r	[I		I

	ı			
P21.21	Deceleration time of positioning	Acceleration time of positioning means the time needed for the inverter to accelerate from 0Hz to Max. output frequency (P00.03). Deceleration time of positioning means the time needed for the inverter to decelerate from Max. output frequency (P00.03) to 0hz. Setting range of P21.20: 0.01–300.00s Setting range of P21.21: 0.01–300.00s	3.00s	0
P21.22	Hold time of positioning arrival	Set the hold time of waiting when target positioning position is reached. Setting range: 0.000–60.000s	0.100s	0
P21.23	Home search speed	0.00-50.00Hz	2.00Hz	0
P21.24	Home position offset	0–65535	0	0
P21.25	Hold time of positioning completion signal	The hold time of positioning completion signal, this parameter is also valid for positioning completion signal of spindle orientation. Setting range: 0.000–60.000s	0.200s	0
P21.26	Pulse superposition value	0–65535	0	0
P21.27	Pulse superposition speed	0–6553.5	8.0	0
P21.28	Acceleration/decel eration time after disabling pulse	000.0–3000.0s	5.0s	0
P21.29	Speed feedforward filter time constant (pulse string speed mode)	It is the filter time constant detected by pulse string when the speed reference source is set to pulse string (P0.06=12 or P0.07=12). Setting range: 0–3200.0ms	10.0ms	0
P21.30	Numerator of the 2 nd command ratio	1–65535	1000	0
P21.31- P21.33	Reserved variables	0–65535	0	0
P22 grou		ning		ı

P22.00	Spindle positioning mode selection	Bit0: Enable spindle positioning 0: Disable 1: Enable Bit1: Select spindle positioning reference point 0: Z pulse input 1: S2/S3/S4 terminal input Bit2: Search for reference point 0: Search the reference point only once 1: Search the reference point every time Bit3: Enable reference point calibration 0: Disable 1: Enable Bit4: Positioning mode selection 1 0: Set direction positioning 1: Near-by direction positioning Bit5: Positioning mode selection 2 0: Forward positioning 1: Reverse positioning Bit6: Zeroing command selection 0: Electric level mode 1: Pulse mode Bit7: Reference point calibration mode 0: Calibrate at the first time 1: Calibrate in real time Bit8: Action selection after zeroing signal cancellation (electric level type) 0: Switch to speed mode	0	0
		_		
		,		
	Spindle			
P22.00	•	, ,	0	0
		, ,		
		0: Electric level mode		
		1: Pulse mode		
		Bit7: Reference point calibration mode		
		0: Calibrate at the first time		
		1: Calibrate in real time		
		Bit8: Action selection after zeroing signal cancellation		
		(electric level type)		
		0: Switch to speed mode		
		1: Position lock mode		
		Bit9: Positioning completion signal selection		
		0: Electric level signal		
		1: Pulse signal		
		Bit10: Z pulse signal source		
		0: Motor		
		1: Spindle		
		Bit11–15: Reserved		
		Bit11–15: Reserved During spindle orientation, the speed of the position		
P22.01	Speed of spindle	Bit11-15: Reserved During spindle orientation, the speed of the position point of orientation will be searched, and then it will	10.00Hz	0
P22.01	Speed of spindle orientation	Bit11–15: Reserved During spindle orientation, the speed of the position point of orientation will be searched, and then it will switch over to position control orientation.	10.00Hz	0
P22.01	orientation	Bit11-15: Reserved During spindle orientation, the speed of the position point of orientation will be searched, and then it will	10.00Hz	0

	I			
	of spindle	Spindle orientation deceleration time means the time		
	orientation	needed for the inverter to decelerate from Max. output		
		frequency (P00.03) to 0Hz.		
		Setting range: 0.0–100.0s		
	Spindle zeroing	Users can select the zeroing positions of four spindles		
P22.03	position 0	by terminals (function code 46, 47).	0	0
	position o	Setting range: 0–39999		
P22.04	Spindle zeroing position 1	Setting range: 0–39999	0	0
P22.05	Spindle zeroing position 2	Setting range: 0–39999	0	0
P22.06	Spindle zeroing position 3	Setting range: 0–39999	0	0
	0 : "	Users can select seven spindle scale-division values by		
P22.07	Spindle scale-	terminals (function code 48, 49 and 50).	15.00	0
	division angle 1	Setting range: 0.00–359.99		
D22.00	Spindle scale-	Soffing range: 0.00, 250,00	30.00	
P22.08	division angle 2	Setting range: 0.00–359.99	30.00	0
D22.00	Spindle scale-	Setting represed 0.00 350 00	45.00	
P22.09	division angle 3	Setting range: 0.00–359.99	45.00	0
P22.10	Spindle scale-	Softing range: 0.00, 350,00	60.00	0
P22.10	division angle 4	Setting range: 0.00–359.99	60.00	O
P22.11	Spindle scale-	Sotting range: 0.00, 350,00	90.00	0
P22.11	division angle 5	Setting range: 0.00–359.99	90.00	0
D00.40	Spindle scale-	Setting reason 0.00, 350,00	100.00	
P22.12	division angle 6	Setting range: 0.00–359.99	120.00	0
D00.40	Spindle scale-	S-#ing range 0.00 350.00	100.00	
P22.13	division angle 7	Setting range: 0.00–359.99	180.00	0
		This function code sets the reduction ratio of the spindle		
P22.14	Spindle drive ratio	and the mounting shaft of the encoder.	1.000	0
		Setting range: 0.000–30.000		
	7	P22.15 sets spindle zero-point offset, if the selected		
D00.45	Zero-point	spindle zero point is P22.03, the final spindle zero point		
P22.15	communication	will be the sum of P22.03 and P22.15.	0	0
	setup of spindle	Setting range: 0–39999		
D00.40	Reserved			
P22.16	variables	0–65535	0	0
D00 17	Reserved	0.05505		
P22.17	variables	0–65535	0	0

	T			
		Ones: Enable/disable		
		0: Disable		
		1: Enable		
P22.18	Rigid tapping	Tens: Analog port selection	0x00	0
	selection	0: Invalid	0,000	0
		1: Al1		
		2: AI2		
		3: AI3		
P22.19	Analog filter time	0.0ms-1000.0ms	1.0ms	0
	of rigid tapping			
P22.20	Max. frequency of rigid tapping	0.00–400.00Hz	50.00Hz	0
	Corresponding			
D00.04	frequency of	0.00 40.001	0.0011	
P22.21	analog zero drift	0.00-10.00Hz	0.00Hz	0
	of rigid tapping			
	Reserved			
P22.22	variables	0–1	0	0
P22.23-	Reserved	0–65535	0	0
P22.24	variables	0-0000	U	0
P23 grou	p Vector control	of motor 2		
	Speed loop	P23.00-P23.05 fit for vector control mode only. Below		
P23.00	proportional gain	switch-over frequency 1 (P23.02), the speed loop PI	20.0	0
	1	parameters are P23.00 and P23.01. Above switch-over		
P23.01	Speed loop	frequency 2 (P23.05), the speed loop PI parameters are	0.200s	0
F23.01	integral time 1	P23.03 and P23.04; in between them, the PI	0.2008	0
P23.02	Switch over low	parameters are obtained by linear variation between	5.00Hz	0
1-23.02	point frequency	two groups of parameters, as shown in the figure below.	J.00HZ	
	Speed loop	PI parameters		
P23.03	proportional gain	(P23.00,P23.01)	20.0	0
	2			
P23.04	Speed loop	(P23.03,P23.04)	0.200s	0
1 20.07	integral time 2	(F20.00,F20.04)	0.2003	
		P23.02 P23.05 Output frequency f		
1		The speed loop dynamic response characteristics of		
P23.05	Switch over high	vector control can be adjusted by setting the	10.00Hz	0
P23.05	point frequency	proportional coefficient and integral time of speed	10.0002	
		regulator. Increase proportional gain or decrease		
		integral time can accelerate dynamic response of speed		
	I .			ı

		loop, however, if the proportional gain is too large or		
		integral time is too small, system oscillation and large		
		overshoot may occur; if proportional gain is too small,		
		stable oscillation or speed offset may occur.		
		Speed loop PI parameter is closely related to the		
		system inertia, users should make adjustment		
		according to different load characteristics based on the		
		default PI parameter to fulfill different needs.		
		Setting range of P23.00: 0.0–200.0		
		Setting range of P23.01: 0.000–10.000s		
		Setting range of P23.02: 0.00Hz–P23.05		
		Setting range of P23.03: 0.0–200.0		
		Setting range of P23.04: 0.000–10.000s		
		Setting range of P23.05: P23.02–P00.03 (Max. output		
		frequency)		
P23.06	Speed loop output filter	0-8 (corresponds to 0-2^8/10ms)	0	0
	Slip compensation			
P23.07	coefficient of	Slip componentian coefficient is used to adjust the eli-	100%	0
723.07	vector control	Slip compensation coefficient is used to adjust the slip	10070	
	(motoring)	frequency of vector control to improve system speed		
	Slip compensation	control precision. Users can effectively control the static		
P23.08	coefficient of	error of speed by adjusting this parameter properly.	100%	0
P23.08	vector control	Setting range: 50–200%	100%	
	(generating)			
	Current loop	Note:		
P23.09	proportional	1. These two parameters are used to adjust PI	1000	0
	coefficient P	parameters of current loop; it affects dynamic response		
		speed and control precision of the system directly. The		
		default value needs no adjustment under common		
		conditions;		
	Current loop	2. Fit for SVC mode 0 (P00.00=0) and VC mode		
P23.10	integral coefficient	(P00.00=3);	1000	0
	I	3. The value of this function code will be updated		
		automatically after parameter autotuning of		
		synchronous motor is done.		
		Setting range: 0–65535		
P23.11	Speed loop	0.00-10.00s	0.00s	0
r23.11	differential gain	0.00-10.008	0.008	

P23.12		Under VC mode (P00.00=3), below current loop high-frequency switch-over threshold (P23.14), current loop PI parameters are P23.09 and P23.10; above current	1000	0
P23.13	·	loop high-frequency switch-over threshold, current loop	1000	0
P23.14	High-frequency switch-over threshold of current loop	Setting range of P23.13: 0–20000 Setting range of P23.14: 0.0–100.0% (relative to max. frequency)	100.0%	0
P23.15-	Reserved	0–65535	0	•
P23.19	variables			
P24 grou	p Encoder of mo	tor 2		
P24.00	Encoder type display	O: Incremental encoder 1: Resolver-type encoder 2: Sin/Cos encoder 3: Endat absolute encoder	0	•
P24.01	Encoder pulse number	Number of pulses generated when the encoder revolves for one circle. Setting range: 0–60000	1024	0
P24.02	Encoder direction	Ones: AB direction 0: Forward 1: Reverse Tens: Z pulse direction (reserved) 0: Forward 1: Reverse Hundreds: CD/UVW pole signal direction 0: Forward 1: Reverse	0x000	0
P24.03	Detection time of encoder offline fault	The detection time of encoder offline fault. Setting range: 0.0–10.0s	1.0s	0
P24.04	Detection time of encoder reversal fault	Detection time of encoder reversal fault. Setting range: 0.0–100.0s	0.8s	0
P24.05	Filter times of encoder detection	Setting range: 0x00–0x99 Ones: Low-speed filter times, corresponds to 2^(0–9)×125us.	0x33	0
L	1	1 /		

		Tens: High-speed filter times; corresponds to 2^(0-		
		9)×125us.		
	Speed ratio	Users need to set this parameter when the encoder is		
50400	between encoder	not installed on the motor shaft and the drive ratio is	4 000	
P24.06	mounting shaft	not 1.	1.000	0
	and motor	Setting range: 0.001–65.535		
		Bit0: Enable Z pulse calibration		
		Bit1: Enable encoder angle calibration		
		Bit2: Enable SVC speed measurement		
		Bit3: Select resolver speed measurement mode		
	Control	Bit4: Z pulse capture mode		
	parameters of	Bit5: Do not detect encoder initial angle in v/f control		
P24.07	synchronous	Bit6: Enable CD signal calibration	0x3	0
	motor	Bit7: Disable sin/cos sub-division speed measurement		
		Bit8: Do not detect encoder fault during autotuning		
		Bit9: Enable Z pulse detection optimization		
		Bit10: Enable initial Z pulse calibration optimization		
		Bit12: Clear Z pulse arrival signal after stop		
		0x00-0x11		
		Ones: Z pulse		
	Enable Z pulse	Reserved		
P24.08	offline detection	Tens: UVW pulse	0x10	0
		0: Do not detect		
		1: Enable		
		Relative electric angle of encoder Z pulse and motor		
P24.09	Initial angle of Z	pole position.	0.00	0
	pulse	Setting range: 0.00–359.99		
		Relative electric angle of encoder position and motor		
P24.10	Initial angle of the	pole position.	0.00	0
	pole	Setting range: 0.00–359.99	0.00	
		0–3		
	Autotuning of	1: Rotary autotuning (DC brake)		
P24.11	initial angle of	2: Static autotuning (suitable for resolver-type encoder,	0	0
	pole	sin/cos with CD signal feedback)	· ·	
	ps.5	3: Rotary autotuning (initial angle identification)		
	Speed			
	measurement	0: No optimization		
P24.12	optimization	1: Optimization mode 1	1	0
	selection	2: Optimization mode 2		
	COLOGION			l

P24.13	CD signal zero offset gain	0–65535	0	0
P24.14	Encoder type selection	Ones: Incremental encoder 0: without UVW 1: with UVW Tens: Sin/Cos encoder 0: without CD signal 1: with CD signal	0x00	0
P24.15	Speed measurement	0: PG card 1: local; realized by HDIA and HDIB; supports	0	0
	mode	incremental 24V encoder only		
P24.16	Frequency- division coefficient	0–255 When this parameter is set to 0 or 1, frequency division of 1:1 is implemented.	0	0
P24.17	Pulse filer processing	0x0000–0xffff Bit0: Enable/disable encoder input filter 0: No filter 1: Filter Bit1: Encoder signal filter mode (set Bit0 or Bit2 to 1) 0: Self-adaptive filter 1: Use P20.18 filter parameters Bit2: Enable/disable encoder frequency-division output filter 0: No filter 1: Filter Bit3: Reserved Bit4: Enable/disable pulse reference filter 0: No filter 1: Filter Bit5: Pulse reference filter mode (valid when Bit4 is set to 1) 0: Self-adaptive filter 1: Use P24.19 filter parameters Bit6: Frequency-divided output source setting 0: Encoder signals 1: Pulse reference signals Bits7–15: Reserved	0x0011	0
P24.18	Encoder pulse	0–63	10	0
	filter width	The filtering time is P24.18×0.25 μ s. The value 0 or 1	. •	_

		indicates 0.25 μs.		
		0–63		
P24.19	Pulse reference	The filtering time is P24.19×0.25 µs. The value 0 or 1	10	0
	filter width	indicates 0.25 μs.		
P24.20	Pulse number of	of 0–65535		0
1 24.20	pulse reference	0-0000	1024	0
	Enable angle			
P24.21	compensation of	0–1	0	0
	synchronous			
	motor			
	Switch-over			
	frequency			
P24.22	threshold of	0-630.00Hz	1.00Hz	0
	speed		1.00112	
	measurement			
	mode			
P24.23-	Reserved	0-65535	0	0
P24.24	P24.24 variables			
P25 grou	p Extension I/O	card input functions	•	1
P25.00	HDI3 input type	0: HDI3 is high-speed pulse input	0	0
1 25.00	selection	1: HDI3 is digital input	0	0
P25.01	S5 terminal		0	0
1 20.01	function			
P25.02	S6 terminal		0	0
1 20.02	function			
P25.03	S7 terminal		0	0
1 20.00	function			
P25.04	S8 terminal	The same with P05 group	0	0
. 20.0	function	·		
P25.05	S9 terminal		0	0
. 20.00	function			
P25.06	S10 terminal		0	0
. 25.00	function			
P25.07	HDI3 terminal		0	0
	function			
	Input terminal			
P25.08	polarity of	0x00-0x7F	0x00	0
	extension card			
P25.09	Virtual terminal	0x000–0x7F (0: disable, 1: enable)	0x00	0

		DITO: OF city-14-main-1		
	-	BIT0: S5 virtual terminal		
	card	BIT1: S6 virtual terminal		
		BIT2: S7 virtual terminal		
		BIT3: S8 virtual terminal		
		BIT4: S9 virtual terminal		
		BIT5: S10 virtual terminal		
		BIT6: HDI3 virtual terminal		
P25.10	HDI3 terminal switch-on delay		0.000s	0
	HDI3 terminal			
P25.11	switch-off delay		0.000s	0
	S5 terminal			
P25.12	switch-on delay		0.000s	0
P25.13	S5 switch-off		0.000s	0
F 20.13	delay		0.0005)
P25.14	S6 terminal switch-on delay		0.000s	0
	S6 switch-off	These function codes define corresponding delay of the		
P25.15	delay	programmable input terminals during level variation	0.000s	0
	S7 terminal	from switch-on to switch-off .		
P25.16			0.000s	0
	switch-on delay	Si electrical level		
P25.17	S7 switch-off delay	Si valid // valid///////// invalid Switcn-on Switcn-on Switcn-off	0.000s	0
	S8 terminal	Switcn-on Switcn-off delay delay		
P25.18	switch-on delay	, , , , , , , , , , , , , , , , , , , ,	0.000s	0
	S8 switch-off	Setting range: 0.000–50.000s		
P25.19	delay		0.000s	0
D05.00	S9 terminal			
P25.20	switch-on delay		0.000s	0
	S9 switch-off			
P25.21	delay		0.000s	0
P25.22	S10 terminal		0.0000	0
P20.22	switch-on delay		0.000s	
D05.00	S10 switch-off		0.000	
P25.23	delay		0.000s	0
P25.24	Lower limit value of Al3	These function codes define the relation between analog input voltage and corresponding set value of	0.00V	0
P25.25	Corresponding	analog input. When the analog input voltage exceeds	0.0%	0
	setting of lower	the range of max./min. input, the max. input or min.		

	limit of AI3	input will be adopted during calculation.		
		When analog input is current input, 0–20mA current		
P25.26	Upper limit value		10.00V	0
	of AI3	corresponds to 0–10V voltage.		
	Corresponding	In different application cases, 100% of the analog		
P25.27	setting of upper	setting corresponds to different nominal values.	100.0%	0
	limit of AI3	The figure below illustrates several settings. Corresponding		
P25.28	Input filter time of	setting	0.030s	0
F 23.20	Al3		0.0303	0
D05 00	Lower limit value		0.001/	0
P25.29	of AI4	0 / AI	0.00V	0
	Corresponding	/ 20mA /Al3/Al4		
P25.30	setting of lower		0.0%	0
	limit of AI4	/ -100%		
	Upper limit value	Input filter time: Adjust the sensitivity of analog input,		_
P25.31	of AI4	increase this value properly can enhance the anti-	10.00V	0
	Corresponding	interference capacity of analog variables; however, it		
P25.32	setting of upper	will also degrade the sensitivity of analog input.	100.0%	0
	limit of AI4	Note: Al3 and Al4 can support 0–10V/0–20mA input,		
		when Al3 and Al4 select 0–20mA input, the		
		corresponding voltage of 20mA is 10V;		
		Setting range of P25.24: 0.00V–P25.26		
		Setting range of P25.25: -100.0%—100.0%		
		Setting range of P25.26: P25.24–10.00V		
	Input filter time of	5 5		
P25.33	Al4	Setting range of P25.28: 0.000s–10.000s	0.030s	0
	Al -1	Setting range of P25.29: 0.0005–10.0005 Setting range of P25.29: 0.00V–P25.31		
		Setting range of P25.30: -100.0%—100.0%		
		Setting range of P25.31: P25.29–10.00V		
		Setting range of P25.32: -100.0%—100.0%		
	LIDIO bink and a	Setting range of P25.33: 0.000s–10.000s		
D05.04	HDI3 high-speed	0: Set input via frequency	0	
P25.34	pulse input	1: Count	0	0
	function		0.000	
P25.35	Lower limit	0.000 KHz – P25.37	0.000	0
	frequency of HDI3		KHz	
	Corresponding			
P25.36	setting of lower	-100.0%—100.0%	0.0%	0
	limit frequency of			
	HDI3			

P25.37	Upper limit	P25.35 –50.000KHz	50.000	0
P25.37	frequency of HDI3	P25.33 –30.000KHZ	KHz	0
P25.38	Corresponding setting of upper limit frequency of HDI3	-100.0%–100.0%		0
P25.39	HDI3 frequency input filter time	0.000s-10.000s	0.030s	0
P25.40	Al3 input signal type	Range: 0–1 0: Voltage type 1: Current type	0	0
P25.41	Al4 input signal type	Range: 0–1 0: Voltage type 1: Current type	0	0
P25.42- P25.45	Reserved variables	0–65535	0	0
P26 grou	p Output function	ns of extension I/O card		
P26.00	HDO2 output type	O: Open collector high-speed pulse output Open collector output	0	0
P26.01	HDO2 output selection		0	0
P26.02	Y2 output selection		0	0
P26.03	Y3 output selection		0	0
P26.04	Relay RO3 output selection		0	0
P26.05	Relay RO4 output selection	The come with DOC 04	0	0
P26.06	Relay RO5 output selection	The same with P06.01	0	0
P26.07	Relay RO6 output selection		0	0
P26.08	Relay RO7 output selection		0	0
P26.09	Relay RO8 output selection		0	0
P26.10	Relay RO9 output selection		0	0

P26.11	Relay RO10		0	0
P20.11	output selection		U	O
	Output terminal	0x0000-0x7FF		
P26.12	polarity of		0x000	0
	extension card	RO10, RO9RO3, HDO2,Y3, Y2 in sequence		
P26.13	HDO2 switch-on		0.000s	0
F20.13	delay		0.0008	0
P26.14	HDO2 switch-off		0.000s	0
F 20.14	delay		0.0003)
P26.15	Y2 switch-on		0.000s	0
P20.15	delay		0.0008	0
P26.16	Y2 switch-off		0.000s	0
F20.10	delay		0.0008	0
P26.17	Y3 switch-on		0.000s	0
F20.17	delay		0.0008	0
P26.18	Y3 switch-off		0.000s	0
F20.10	delay		0.0008	0
P26.19	Relay RO3	This firestion and defines the common adding delay of	0.000s	0
120.19	switch-on delay	This function code defines the corresponding delay of the level variation from switch-on to switch-off.	0.0005	O
P26.20	Relay RO3		0.000s	0
1 20.20	switch-off delay	Y electric level	0.0003	0
P26.21	Relay RO4	Y valid Invalid /// Valid////////	0.000s	0
1 20.21	switch-on delay	Switch on → Switch off → delay delay	0.0003	O
P26.22	Relay RO4	Setting range: 0.000–50.000s	0.000s	0
1 20.22	switch-off delay	Note: P26.13 and P26.14 are valid only when P26.00	0.0003	0
P26.23	Relay RO5	is set to 1.	0.000s	0
1 20.20	switch-on delay		0.0003	Ü
P26.24	Relay RO5		0.000s	0
1 20.24	switch-off delay		0.0003	0
P26.25	Relay RO6		0.000s	0
. 20.20	switch-on delay		3.0000	Ŭ
P26.26	Relay RO6		0.000s	0
. 20.20	switch-off delay		0.0000	
P26.27	Relay RO7		0.000s	0
3,	switch-on delay		0.0000	
P26.28	Relay RO7		0.000s	0
. 20.20	switch-off delay		3.0000	Ŭ
P26.29	Relay RO8		0.000s	0
1 20.20	switch-on delay		0.0000	J

P26.30	Relay RO8 switch-off delay		0.000s	0
B00.04	Relay RO9		0.000	
P26.31	switch-on delay		0.000s	0
D06 00	Relay RO9		0.000-	0
P26.32	switch-off delay		0.000s	O
P26.33	Relay RO10		0.000s	0
F20.33	switch-on delay		0.0008	0
P26.34	Relay RO10		0.000s	0
F 20.54	switch-off delay		0.0005	O
P26.35	AO2 output		0	0
F 20.55	selection		U	O
P26.36	AO3 output	The same with P06.14	0	0
1 20.50	selection	The same with 60.14	U	0
P26.37	Reserved		0	0
1 20.07	variables		Ů	Ü
P26.38	Lower limit of AO2	Above function codes define the relation between	0.0%	0
1 20.00	output	output value and analog output. When the output value	0.070	Ü
	Corresponding	exceeds the set max./min. output range, the upper/low		
P26.39	AO2 output of	limit of output will be adopted during calculation.	0.00V	0
	lower limit	When analog output is current output, 1mA		
P26.40	Upper limit of AO2	corresponds to 0.5V voltage. In different applications,	100.0%	0
F20.40	output	100% of output value corresponds to different analog	100.076	0
	Corresponding	outputs.		
P26.41	AO2 output of	AO 10V (20mA)	10.00V	0
	upper limit			
P26.42	AO2 output filter		0.000s	0
F20.42	time	/ i	0.0008	0
P26.43	Lower limit of AO3		0.0%	0
P20.43	output	0.0% 100.0%	0.0%	O
	Corresponding	 Setting range of P26.38: -100.0%–P26.40		
P26.44	AO3 output of	Setting range of P26.39: 0.00V–10.00V	0.00V	0
	lower limit	Setting range of P26.40: P26.38–100.0%		
P26.45	Upper limit of AO3	Setting range of P26.41: 0.00V–10.00V	100.0%	0
P20.45	output	Setting range of P26.42: 0.000s–10.000s	100.0%	O
	Corresponding	Setting range of P26.43: -100.0%–P26.45		
P26.46	AO3 output of	Setting range of P26.44: 0.00V–10.00V	10.00V	0
	upper limit	Setting range of P26.45: P26.43–100.0%		
P26.47	AO3 output filter	Setting range of P26.46: 0.00V–10.00V	0.000s	0
l				

	time	Setting range of P26.47: 0.000s–10.000s		
P26.48- P26.52	Reserved variables	0–65535	0	0
P28 group	p Master/slave co	ontrol functions		
P28.00	Master/slave mode selection	The master/slave control is invalid This machine is a master This machine is a slave	0	0
P28.01	Master/slave communication data selection	communication 0: CAN 1: Reserved		0
P28.02	Master/slave control mode	Ones: Master/slave running mode selection 0: Master/slave mode 0 (The master and slave adopt speed control and maintains the power balance by droop control) 1: Master/slave mode 1 (The master and slave must be in the same type of vector control mode. The master is speed control, and the slave will be forced to be in the torque control mode. 2: Master/slave mode 2 Start in the slave first speed mode (master/slave mode 0) and then switch to torque mode at a certain frequency point (master/slave mode 1) Tens: Slave start command source selection 0: Follow the master to start 1: Determined by P00.01 Hundreds: Slave transmitting/master receiving data enable 0: Enable 1: Disable	0x001	0
P28.03	Slave speed gain	0.0–500.0%	100.0%	0
P28.04	Slave torque gain	0.0–500.0%	100.0%	0
P28.05	Master/slave mode 2 speed mode / torque mode switching frequency point	0.00–10.00Hz	5.00Hz	0
P28.06	Number of slaves	0–15	1	0
P28.07- P28.29	Reserved variables	0–65535	0	0

P90 group	Customized fu	nction group 1		
P90.00-	Reserved	0–65535	0	0
P90.39	variables	0-0000	U	0
P91 group	Customized fu	nction group 2		
P91.00-	Reserved	0–65535	0)
P91.39	variables	0-00030	U	0
P92 group	Customized fu	nction group 3		
P92.00-	Reserved	0.05525	0)
P92.39	variables	0–65535	0	0
P93 group	Customized fu	nction group 4		
P93.00-	Reserved	0.05525	0	
P93.39	variables	0–65535	0	O

7. Troubleshooting

7.1 What this chapter contains

The chapter tells users how to reset faults and check faults history. A complete list of alarms and fault information as well as possible causes and corrective measures are presented in this chapter.

Only well-trained and qualified professionals are allowed to carry out the work described in this chapter. Operations should be carried out according to the instructions presented in Safety precautions.

7.2 Indications of alarms and faults

The fault is indicated by indicators (refer to the "Keypad operation process"). When TRIP indicator is on, the alarm or fault code displayed in the keypad indicates the inverter is in exception state. This chapter covers most of the alarms and faults, and their possible causes and corrective measures, if users cannot figure out the alarm or fault causes, contact local MORGENSEN office.

7.3 Fault reset

Users can reset the inverter via STOP/RST key on the keypad, digital inputs, or by cutting off the inverter power. After faults are removed, the motor can be start again.

7.4 Fault history

P07.27–P07.32 record the six latest fault types; P07.33–P07.40, P07.41–P07.48, and P07.49–P07.56 record the running data of the inverter when the latest three faults occurred.

7.5 Inverter faults and solutions

When fault occurred, process the fault as shown below.

- When inverter fault occurred, confirm whether keypad display is improper? If yes, contact MORGENSEN;
- If keypad works properly, check the function codes in P07 group to confirm the corresponding fault record parameters, and determine the real state when current fault occurred through parameters;
- Check the table below to see whether corresponding exception states exist based on the corresponding corrective measures;
- 4. Rule out the faults or ask for help from professionals;
- 5. After confirming faults are removed, reset the fault and start running.

7.5.1 Details of faults and solutions

Fault code	Fault type	Possible cause	Corrective measures
OUt1	Inverter unit Phase-U protection	Acceleration is too fast; IGBT module is damaged;	Increase acceleration time; Replace the power unit;
OUt2	Inverter unit Phase-V protection	Misacts caused by interference; drive wires are	Check drive wires; Check whether there is strong
OUt3	Inverter unit Phase- W protection	poorly connected ; To-ground short circuit occurs	interference surrounds the peripheral equipment
OV1	Over-voltage during acceleration	Exception occurred to input	Check input power; Check whether load deceleration
OV2	Over-voltage during deceleration	voltage; Large energy feedback;	time is too short; or the motor starts during rotating;
OV3	Over-voltage during constant speed running	Dynamic brake is not enabled C	Install dynamic brake units; Check the setup of related function codes
OC1	Over-current during acceleration	Acceleration is too fast:	Increase acceleration /deceleration time;
OC2	Over-current during deceleration	Grid voltage is too low;	Check input power; Select the inverter with larger
осз	Over-current during constant speed running	Inverter power is too small; Load transient or exception occurred; To-ground short circuit or output phase loss occur; Strong external interference sources; Overvoltage stall protection is not enabled	power; Check if the load is short circuited (to-ground short circuit or line-to-line short circuit) or the rotation is not smooth; Check the output wiring; Check if there is strong interference; Check the setup of related function codes.
UV	Bus undervoltage	Grid voltage is too low;	Check grid input power;

Fault			
code	Fault type	Possible cause	Corrective measures
	fault	Overvoltage stall protection is	Check the setup of related
		not enabled	function codes
OL1	Motor overload	Grid voltage is too low; Rated motor current is set improperly; Motor stall or load jumps violently	Check grid voltage; Reset rated motor current; Check the load and adjust torque boost
OL2	Inverter overload	Acceleration is too fast; The motor in rotating is restarted; Grid voltage is too low; Load is too large; Power is too small;	Increase acceleration time; Avoid restart after stop; Check grid voltage; Select the inverter with larger power; Select proper motor
SPI	Phase loss on input side	Phase loss or violent fluctuation occurred to R, S and T input	Check the input power; Check installation wiring
SPO	Phase loss on output side	Phase loss occurred to U, V, W output (or the three phases of motor is asymmetrical)	Check the output wiring; Check the motor and cable
OH1	Overheat of rectifier module	Air duct is blocked or fan is damaged;	Ventilate the air duct or replace
OH2	Overheat of inverter module	Ambient temperature is too high; Long-time overload running	the fan; Lower the ambient temperature
EF	External fault	SI external fault input terminal acts	Check external device input
CE	485 communication fault	Baud rate is set improperly; Communication line fault; Communication address error; Communication suffers from strong interference	Set proper baud rate; Check the wiring of communication interfaces; Set proper communication address; Replace or change the wiring to enhance anti-interference capacity
ItE	Current detection fault	Poor contact of the connector of control board; Hall component is damaged; Exception occurred to	Check the connector and replug; Replace the hall component; Replace the main control board

Fault code	Fault type	Possible cause	Corrective measures
		amplification circuit	
tE	Motor autotuning fault	Motor capacity does not match with the inverter capacity, this fault may occur easily if the difference between them is exceeds five power classes; Motor parameter is set improperly; The parameters gained from autotuning deviate sharply from the standard parameters; Autotuning timeout	Change the inverter model, or adopt V/F mode for control; Set proper motor type and nameplate parameters; Empty the motor load and carry out autotuning again; Check motor wiring and parameter setup; Check whether upper limit frequency is larger than 2/3 of the rated frequency
EEP	EEPROM fault	R/W error occurred to the control parameters; EEPROM is damaged	Press STOP/RST to reset; Replace the main control board
PIDE	PID feedback offline fault	PID feedback offline; PID feedback source disappears;	Check PID feedback signal wires; Check PID feedback source
bCE	Brake unit fault	Brake circuit fault or brake tube is damaged; The resistance of external brake resistor is too small	Check the brake unit, replace with new brake tubes; Increase brake resistance
END	Running time is up	The actual running time of the inverter is larger than the set running time	Ask help from the supplier, adjust the set running time
OL3	Electronic overload fault	The inverter releases overload pre-alarm based on the set value	Check the load and overload pre-alarm threshold
PCE	Keypad communication fault	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication	Check the keypad wires to confirm whether fault exists; Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service

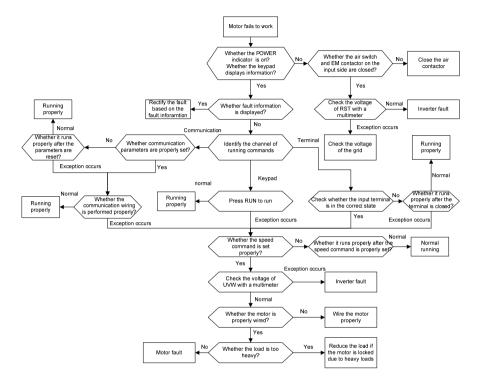
Fault code	Fault type	Possible cause	Corrective measures
		part of the main board	
UPE	Parameter upload error	The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Circuit fault occurred to the keypad or communication part of the main board	Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Replace the hardware and ask for maintenance service
DNE	Parameter download error The keypad wire is poorly contacted or disconnected; The keypad wire is too long and suffers strong interference; Data storage error occurred to the keypad		Check the surroundings to rule out interference source; Replace the hardware and ask for maintenance service; Re-backup keypad data
ETH1	To-ground short circuit fault 1	Inverter output is short connected to the ground; Current detection circuit is faulty; Actual motor power setup deviates sharply from the inverter power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
ETH2	To-ground short circuit fault 1	Inverter output is short connected to ground; Current detection circuit is faulty; Actual motor power setup deviates sharply from the inverter power	Check whether motor wiring is proper; Replace the hall component; Replace the main control board; Reset the motor parameters properly
dEu	Speed deviation fault	Load is too heavy, or stall occurred	Check the load to ensure it is proper, increase the detection time; Check whether control parameters are set properly
STo	Maladjustment fault	Control parameters of synchronous motor is set	Check the load to ensure it is proper,

Fault code	Fault type	Possible cause	Corrective measures	
		improperly; The parameter gained from autotuning is inaccurate; The inverter is not connected to motor	Check whether load is proper; Check whether control parameters are set correctly; Increase maladjustment detection time	
LL	Electronic underload fault	The inverter performs underload pre-alarm based on the set value	Check the load and overload pre-alarm threshold	
ENC10	Encoder offline fault	Encoder line sequence is wrong, or signal wires are poorly connected	Check the encoder wiring	
ENC1D	Encoder reversal fault	The encoder speed signal is contrary to the motor running direction	Reset encoder direction	
ENC1Z	Encoder Z pulse offline fault	Z signal wires are disconnected	Check the wiring of Z signal	
ОТ	Motor over- temperature fault	Motor over-temperature input terminal is valid; Exception occurred to t temperature detection Exception occurred to resistor; Long-time overload running or exception occurred	Check the wiring of motor over- temperature input terminal (terminal function 57); Check whether temperature sensor is proper; Check the motor and perform maintenance on the motor	
STO	Safe torque off	Safe torque off function is enabled by external forces	/	
STL1	Exception occurred to safe circuit of channel H1	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel H1	Check whether terminal wiring of STO is proper and firm enough; Check whether external switch of STO can work properly; Replace the control board	
STL2	Exception occurred to channel H2 safe circuit	The wiring of STO is improper; Fault occurred to external switch of STO; Hardware fault occurred to safety circuit of channel H2	Check whether terminal wiring of STO is proper and firm enough Check whether external switch of STO can work properly; Replace the control board	

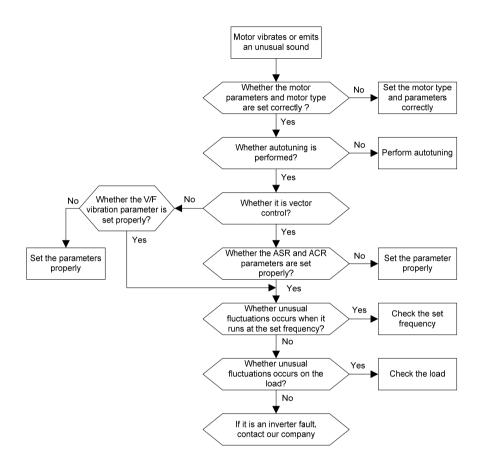
Fault code	Fault type	Possible cause	Corrective measures	
STL3	Exception occurred to channel H1 and channel H2	Hardware fault occurred to STO circuit	Replace the control board	
CrCE	Safety code FLASH CRC check fault	Control board is faulty	Replace the control board	
E-Err	Repetitive extension card type	The two inserted extension cards are of the same type	Users should not insert two cards with the same type; check the type of extension card, and remove one card after power down	
ENCUV	Encoder UVW loss fault	No electric level variation occurred to UVW signal	Check the wiring of UVW; Encoder is damaged	
F1-Er	Failed to identify the extension card in card slot 1	There is data transmission in interfaces of card slot 1, however, it cannot read the card type	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down	
F2-Er	Failed to identify the extension card in card slot 2	There is data transmission in interfaces of card slot 2, however, it cannot read the card type	Confirm whether the extension card inserted can be supported Stabilize the extension card interfaces after power down, ar confirm whether fault still occur at next power-on; Check whether the insertion pois damaged, if yes, replace the insertion port after power down	
F3-Er	Failed to identify the the extension card in card slot 3	There is data transmission in interfaces of card slot 3, however, it cannot read the card type	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the	

Fault code	Fault type	Possible cause	Corrective measures
			insertion port after power down
C1-Er	Communication timeout occurred to the extension card in card slot 1	There is no data transmission in interfaces of card slot 1	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
C2-Er	Communication timeout occurred to the extension card in card slot 2	There is no data transmission in interfaces of card slot 2	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
C3-Er	Communication timeout occurred to the extension card in card slot 3	There is no data transmission in interfaces of card slot 3	Confirm whether the extension card inserted can be supported; Stabilize the extension card interfaces after power down, and confirm whether fault still occurs at next power-on; Check whether the insertion port is damaged, if yes, replace the insertion port after power down
E-DP	Profibus card communication timeout fault There is no data transmiss between the communication card and the host compute (or PLC)		Check whether the communication card wiring is loose or dropped
E-NET	Ethernet card communication timeout fault	There is no data transmission between the communication card and the host computer	Check whether the communication card wiring is loose or dropped
E-CAN	CANopen card communication	There is no data transmission between the communication	Check whether the communication card wiring is

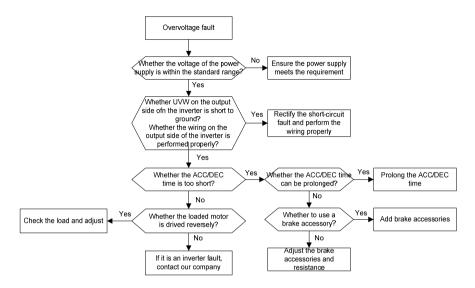
Fault code	Fault type	Possible cause	Corrective measures
	timeout fault	card and the host computer (or PLC)	loose or dropped
E-PN	Profinet card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
E-CAT	EtherCat card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
E-BAC	BACNet card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
E-DEV	DeviceNET card communication timeout fault	There is no data transmission between the communication card and the host computer (or PLC)	Check whether the communication card wiring is loose or dropped
ESCAN	Can master/slave communication card communication timeout fault	There is no data transmission between the CAN master and slave communication cards	Check whether the communication card wiring is loose or dropped
S-Err	Master-slave synchronous CAN slave fault	Fault occurred to one of the CAN slave inverters	Detect the CAN slave inverter and analyze the corresponding fault cause of the inverter


7.5.2 Other state

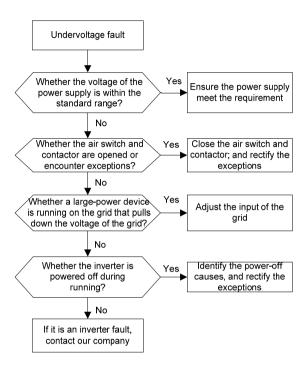
Displayed code	State type	Possible cause	Solution
PoFF	System power failure	The system is powered off or the bus voltage is too low.	Check the grid conditions.


7.6 Analysis on common faults

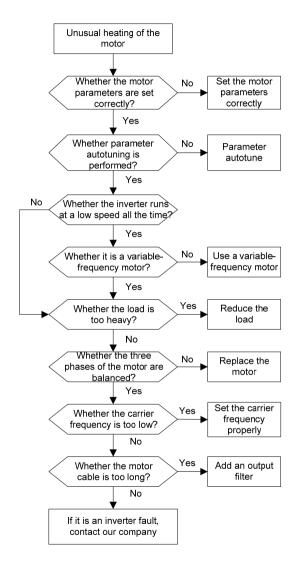
7.6.1 Motor fails to work



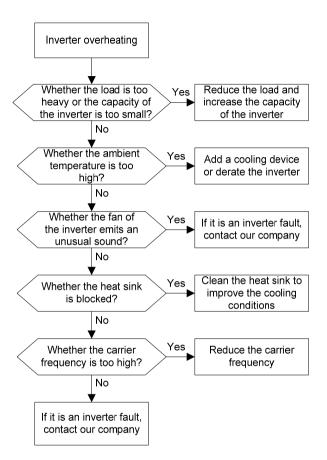
7.6.2 Motor vibrates



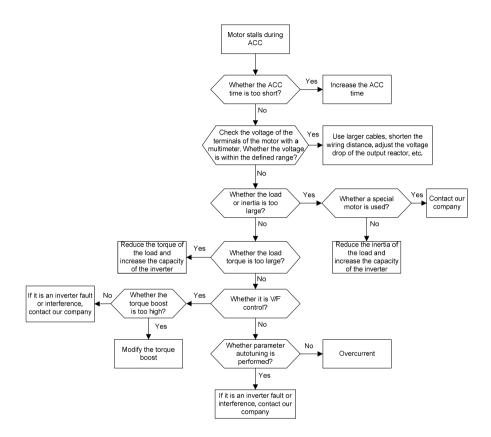
7.6.3 Overvoltage



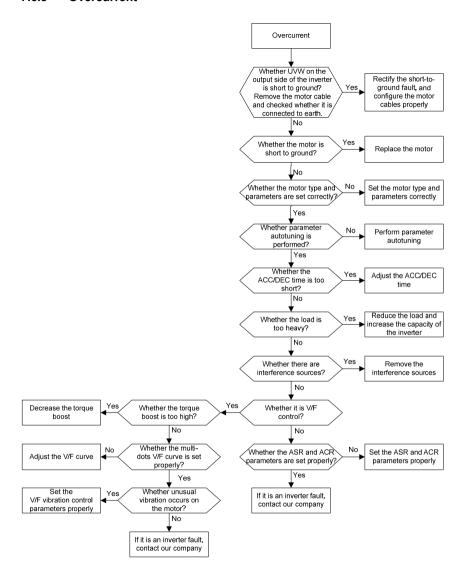
7.6.4 Undervoltage



7.6.5 Unusual heating of motor



7.6.6 Inverter overheating



7.6.7 Motor stalls during ACC

7.6.8 Overcurrent

7.7 Countermeasures on common interference

7.7.1 Interference on meter switches and sensors

Interference phenomenon

Pressure, temperature, displacement, and other signals of a sensor are collected and displayed by a human-machine interaction device. The values are incorrectly displayed as follows after the inverter is started:

- 1. The upper or lower limit is wrongly displayed, for example, 999 or -999.
- 2. The display of values jumps (usually occurring on pressure transmitters).
- The display of values is stable, but there is a large deviation, for example, the temperature is dozens of degrees higher than the common temperature (usually occurring on thermocouples).
- 4. A signal collected by a sensor is not displayed but functions as a drive system running feedback signal. For example, an inverter is expected to decelerate when the upper pressure limit of the compressor is reached, but in actual running, it starts to decelerate before the upper pressure limit is reached.
- After an inverter is started, the display of all kinds of meters (such as frequency meter and current meter) that are connected to the analog output (AO) terminal of the inverter is severely affected, displaying the values incorrectly.
- Proximity switches are used in the system. After an inverter is started, the indicator of a proximity switch flickers, and the output level flips.

Solution

- Check and ensure that the feedback cable of the sensor is 20 cm or farther away from the motor cable.
- 2. Check and ensure that the ground wire of the motor is connected to the PE terminal of the inverter (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal is lower than 1.5Ω).
- Try to add a safety capacitor of 0.1 μF to the signal end of the feedback signal terminal of the sensor.
- 4. Try to add a safety capacitor of $0.1 \mu F$ to the power end of the sensor meter (pay attention to the voltage of the power supply and the voltage endurance of the capacitor).
- 5. For interference on meters connected to the AO terminal of an inverter, if AO uses current signals of 0 to 20 mA, add a capacitor of 0.47 μ F between the AO and GND terminals; and if AO uses voltage signals of 0 to 10 V, add a capacitor of 0.1 μ F between the AO and GND terminals.

Note:

- 1. When a decoupling capacitor is required, add it to the terminal of the device connected to the sensor. For example, if a thermocouple is to transmit signals of 0 to 20 mA to a temperature meter, the capacitor needs to be added on the terminal of the temperature meter.; if an electronic ruler is to transmit signals of 0 to 30 V to a PLC signal terminal, the capacitor needs to be added on the terminal of the PLC.
- 2. If a large number of meters or sensors are disturbed. It is recommended that you configure an external C2 filter on the input power end of the inverter. For models of filters, see section D.7.

7.7.2 Interference on communication

Interference phenomenon

The interference described in this section on 485 communication mainly includes communication delay, out of sync. occasional power-off, or complete power-off that occurs after an inverter is started.

If the communication cannot be implemented properly, regardless of whether the inverter is running, the exception is not necessarily caused by interference. You can find out the causes as follows:

- 1. Check whether the 485 communication bus is disconnected or in poor contact.
- 2. Check whether the two ends of line A or B are connected reversely.
- Check whether the communication protocol (such as the baud rate, data bits, and check bit) of the inverter is consistent with that of the upper computer.

If you are sure that communication exceptions are caused by interference, you can resolve the problem through the following measures:

- Simple inspection.
- 2. Arrange the communication cables and motor cables in different cable trays.
- In multi-inverter application scenarios, adopt the chrysanthemum connection mode to connect the communication cables between inverters, which can improve the anti-interference capability.
- In multi-inverter application scenarios, check and ensure that the driving capacity of the master is sufficient.
- In the connection of multiple inverters, you need to configure one 120 Ω terminal resistor on each end.

Solution

 Check and ensure that the ground wire of the motor is connected to the PE terminal of the inverter (if the ground wire of the motor has been connected to the ground block, you need to use a multimeter to measure and ensure that the resistance between the ground block and PE terminal

is lower than 1.5Ω).

- Do not connect the inverter and motor to the same ground terminal as the upper computer. It is recommended that you connect the inverter and motor to the power ground, and connect the upper computer separately to a ground stud.
- Try to short the signal reference ground terminal (GND) of the inverter with that of the upper computer controller to ensure that ground potential of the communication chip on the control board of the inverter is consistent with that of the communication chip of the upper computer.
- 4. Try to short GND of the inverter to its ground terminal (PE).
- 5. Try to add a safety capacitor of 0.1 μF on the power terminal of the upper computer (PLC, HMI, and touch screen). During this process, pay attention to the voltage of the power supply and the voltage endurance capability of the capacitor. Alternatively, you can use a magnet ring (Fe-based nanocrystalline magnet rings are recommended). Put the power L/N line or +/- line of the upper computer through the magnet ring in the same direction and wind 8 coils around the magnet ring.

7.7.3 Failure to stop and indicator shimmering due to motor cable coupling

Interference phenomenon

1. Failure to stop

In an inverter system where an S terminal is used to control the start and stop, the motor cable and control cable are arranged in the same cable tray. After the system is started properly, the S terminal cannot be used to stop the inverter.

2. Indicator shimmering

After an inverter is started, the relay indicator, power distribution box indicator, PLC indicator, and indication buzzer shimmers, blinks, or emits unusual sounds unexpectedly.

Solution

- Check and ensure that the exception signal cable is arranged 20 cm or farther away from the motor cable.
- 2. Add a safety capacitor of 0.1 µF between the digital input terminal (S) and the COM terminal.
- Connect the digital input terminal (S) that controls the start and stop to other idle digital input terminals in parallel. For example, if S1 is used to control the start and stop and S4 is idle, you can try to connect connect S1 to S4 in parallel.

Note: If the controller (such as PLC) in the system controls more than 5 inverters at the same time through digital input terminals (S), this scheme is not available.

7.7.4 Leakage current and interference on RCD

Inverters output high-frequency PWM voltage to drive motors. In this process, the distributed capacitance between the internal IGBT of an inverter and the heat sink and that between the stator and rotor of a motor may inevitably cause the inverter to generate high-frequency leakage current to the ground. A residual current operated protective device (RCD) is used to detect the power-frequency leakage current when a grounding fault occurs on a circuit. The application of an inverter may cause misoperation of a RCD.

- 1. Rules for selecting RCDs
- (1) Inverter systems are special. In these systems, it is required that the rated residual current of common RCDs at all levels is larger than 200 mA, and the inverters are grounded reliably.
- (2) For RCDs, the time limit of an action needs to be longer than that of a next action, and the time difference between two actions need to be longer than 20 ms. For example, 1s, 0.5s, and 0.2s.
- (3) For circuits in inverter systems, electromagnetic RCDs are recommended. Electromagnetic RCDs have strong anti-interference capability, and thus can prevent the impact of high-frequency leakage current.

Electronic RCD	Electromagnetic RCD
Low cost, high sensitivity, small in volume, susceptible to voltage fluctuation of the grid and ambient temperature, weak anti-interference capability	Requiring highly sensitive, accurate, and stable zero-phase sequence current transformer, using permalloy high-permeability materials, complex process, high cost, not susceptible to voltage fluctuation of the power supply and ambient temperature, strong anti- interference capability

- 2. Solution to RCD misoperation (handling the inverter)
- 1. Try to remove the jumper cap at "EMC/J10" on the middle casing of the inverter.
- 2. Try to reduce the carrier frequency to 1.5 kHz (P00.14=1.5).
- 3. Try to modify the modulation mode to "3PH modulation and 2PH modulation" (P8.40=0).
- 3. Solution to RCD misoperation (handling the system power distribution)
- (1) Check and ensure that the power cable is not soaking in water.
- (2) Check and ensure that the cables are not damaged or spliced.
- (3) Check and ensure that no secondary grounding is performed on the neutral wire.
- (4) Check and ensure that the main power cable terminal is in good contact with the air switch or contactor (all screws are tightened).

- (5) Check 1PH powered devices, and ensure that no earth lines are used as neutral wires by these devices.
- (6) Do not use shielded cables as inverter power cables and motor cables.

7.7.5 Live device chassis

Phenomenon

After an inverter is started, there is sensible voltage on the chassis, and you may feel an electric shock when touching the chassis. The chassis, however, is not live (or the voltage is far lower than the human safety voltage) when the inverter is powered on but not running.

Solution

- 1. If there is power distribution grounding or ground stud on the site, ground the cabinet chassis of the drive system through the power ground or stud.
- If there is no grounding on the site, you need to connect the motor chassis to the ground terminal PE of the inverter, and ensure that the jumper at "EMC/J10" on the middle casing of the inverter is shorted.

8. Maintenance and hardware fault diagnosis

8.1 What this chapter contains

This chapter describes how to carry out preventive maintenance on MSI350 series inverters.

8.2 Periodical inspection

Little maintenance is required when inverters are installed in environments that meet requirements. The following table describes the routine maintenance periods recommended by MORGENSEN.

	Subject	Item	Method	Criterion
		Check the temperature, and		
		humidity, and whether there is	Visual inspection,	The requirements
		vibration, dust, gas, oil spray,	and use instruments	stated in this
		and water droplets in the	for measurement.	manual are met.
Ambie	nt environment	environment.		
		Check whether there are		There are no tools
		foreign matters, such as tools,	Vieuel in an estion	or dangerous
		or dangerous substances	Visual inspection	substances placed
		placed nearby.		nearby.
		Charletha valtage of the main	Use multimeters or	The requirements
	Voltage	Check the voltage of the main	other instruments for	stated in this
		circuit and control circuit.	measurement.	manual are met.
		Check the display of	Visual inspection	The characters are
		information.		displayed properly.
	Keypad	Check whether characters are not completely displayed.	Visual inspection	The requirements
				stated in this
				manual are met.
		Check whether the bolts loose	0	No exception
		or come off.	Screw them up.	occurs.
		Check whether the machine is		
		deformed, cracked, or		
		damaged, or their color	Visual inspection	No exception
Main	Common	changes due to overheating		occurs.
circuit		and aging.		
				No exception
		Check whether there are stains		occurs.
		and dust attached.	Visual inspection	Note: Discoloration
				of copper bars does

Subject	Item	Method	Criterion
			not mean that they cannot work properly.
Conductor and	Check whether the conductors are deformed or their color change due to overheat.	Visual inspection	No exception occurs.
wire	Check whether the wire sheaths are cracked or their color changes.	Visual inspection	No exception occurs.
Terminal block	Check whether there is damage.	Visual inspection	No exception occurs.
	Check whether there is electrolyte leakage, discoloration, cracks, and chassis expansion.	Visual inspection	No exception occurs.
Filter capacitor	Check whether the safety valves are released.	Determine the service life based on the maintenance information, or measure them through electrostatic capacity.	No exception occurs.
	Check whether the electrostatic capacity is measured as required.	Use instruments to measure the capacity.	Electrostatic capacity ≥ initial value × 0.85
	Check whether there is displacement caused due to overheat.	Olfactory and visual inspection	No exception occurs.
Resistor	Check whether the resistors are disconnected.	Visual inspection, or remove one end of the connection cable and use a multimeter for measurement.	Resistance range: ±10% (of the standard resistance)
Transformer and reactor	Check whether there is unusual vibration sounds or smells.	Auditory, olfactory, and visual inspection	No exception occurs.
Electromagnetic contactor and	Check whether there are vibration sounds in the	Auditory inspection	No exception occurs.

	Subject	Item	Method	Criterion
	relay	workshop.		
		Check whether the contacts	Viewel in an estion	No exception
		are in good contact.	Visual inspection	occurs.
		Check whether the screws and	Screw them up.	No exception
		connectors loose.	Screw mem up.	occurs.
		Check whether there is	Olfactory and visual	No exception
		unusual smell or discoloration.	inspection	occurs.
		Check whether there are		No exception
Control	Control PCB,	cracks, damage, deformation,	Visual inspection	occurs.
circuit	connector	or rust.		occurs.
			Visual inspection,	
		Check whether there is	and determine the	No exception
		electrolyte leakage or	service life based on	occurs.
		deformation.	the maintenance	I
			information.	
			Auditory and visual	
		Check whether there are	inspection, and turn	The rotation is
		unusual sounds or vibration.	the fan blades with	smooth.
			your hand.	
	0 " 1	Check whether the bolts loose.	Screw them up.	No exception
	Cooling fan		\r. \r. \r.	occurs.
Cooling		Ob a alcouda ath an the analia	Visual inspection, and determine the	
system		Check whether there is decoloration caused due to	service life based on	No exception
		overheat.	the maintenance	occurs.
-		overneat.	information.	
		Check whether there are	inionnation.	
		foreign matters blocking or		No exception
	Ventilation duct	attached to the cooling fan, air	Visual inspection	occurs.
		inlets, or air outlets.		oodiis.
		mioto, or all outlots.		

For more details about maintenance, contact the local MORGENSEN office, or visit our website http://www.morgensen.de, and choose **Service and Support > Online Service**.

8.3 Cooling fan

The service life of the cooling fan of the inverter is more than 25,000 hours. The actual service life of the cooling fan is related to the use of the inverter and the temperature in the ambient environment.

You can view the running duration of the inverter through P07.14 (Accumulated running time).

The increase of the bearing noise indicates a fan fault. If the inverter is applied in a key position, replace the fan once the fan starts to generate unusual noise. You can purchase spare parts of fans from MORGENSEN.

Cooling fan replacement

- Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.
- Stop the device, disconnect the AC power supply, and wait for a time no shorter than the waiting time designated on the inverter.
- Open the cable clamp to loose the fan cable (for inverters of 380 V, 1.5 to 30 kW, the middle casing needs to be removed).
- 3. Remove the fan cable.
- 4. Remove the fan with a screwdriver.
- Install a new fan in the inverter in the reverse steps. Assemble the inverter. Ensure that the air direction of the fan is consistent with that of the inverter, as shown in the following figure.

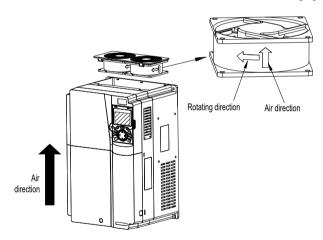


Fig 8.1 Fan maintenance for inverters of 7.5 kW or higher

6. Power on the inverter.

8.4 Capacitor

8.4.1 Capacitor reforming

If the inverter has been left unused for a long time, you need to follow the instructions to reform the

DC bus capacitor before using it. The storage time is calculated from the date the inverter is delivered.

Storage time	Operation principle
Less than 1 year	No charging operation is required.
1 to 2 years	The inverter needs to be powered on for 1 hour before the first running command.
	Use a voltage controlled power supply to charge the inverter:
2 to 2 years	Charge the inverter at 25% of the rated voltage for 30 minutes, and then
2 to 3 years	charge it at 50% of the rated voltage for 30 minutes, at 75% for another 30
	minutes, and finally charge it at 100% of the rated voltage for 30 minutes.
	Use a voltage controlled power supply to charge the inverter:
More than 3 years	Charge the inverter at 25% of the rated voltage for 2 hours, and then
	charge it at 50% of the rated voltage for 2 hours, at 75% for another 2
	hours, and finally charge it at 100% of the rated voltage for 2 hours.

The method for using a voltage controlled power supply to charge the inverter is described as follows:

The selection of a voltage controlled power supply depends on the power supply of the inverter. For inverters with an incoming voltage of 1PH/3PH 230 V AC, you can use a 230 V AC/2 A voltage regulator. Both 1PH and 3PH inverters can be charged with a 1PH voltage controlled power supply (connect L+ to R, and N to S or T). All the DC bus capacitors share one rectifier, and therefore they are all charged. For inverters of a high voltage class, ensure that the voltage requirement (for example, 380 V) is met during charging. Capacitor changing requires little current, and therefore you can use a small-capacity power supply (2 A is sufficient).

The method for using a resistor (incandescent lamp) to charge the drive is described as follows:

If you directly connect the drive device to a power supply to charge the DC bus capacitor, it needs to be charged for a minimum of 60 minutes. The charging operation must be performed at a normal indoor temperature without load, and you must connect a resistor in series mode in the 3PH circuit of the power supply.

For a 380 V drive device, use a resistor of 1 k Ω /100W. If the voltage of the power supply is no higher than 380 V, you can also use an incandescent lamp of 100W. If an incandescent lamp is used, it may go off or the light may become very weak.

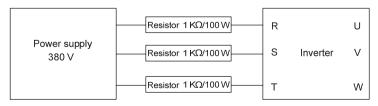


Fig 8.2 Charging circuit example of driving devices of 380 V

8.4.2 Electrolitic capacitor replacement

Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.

The electrolytic capacitor of an inverter must be replaced if it has been used for more than 35,000 hours. For details about the replacement, contact the local MORGENSEN office.

8.5 Power cable

- Read the safety precautions carefully and follow the instructions to perform operations. Otherwise, physical injuries or damage to the device may be caused.
- 1. Stop the inverter, disconnect the power supply, and wait for a time no shorter than the waiting time designated on the inverter.
- 2. Check the connection of the power cables. Ensure that they are firmly connected.
- 3. Power on the inverter.

9. Communication protocol

9.1 What this chapter contains

This chapter describes the communication protocol of MSI350 series products.

MSI350 series inverters provide RS485 communication interfaces and adopt the master-slave communication based on the international standard Modbus communication protocol. You can implement centralized control (setting commands for controlling the inverter, modifying the running frequency and related function code parameters, and monitoring the working state and fault information of the inverter) through PC/PLC, upper control computer, or other devices to meet specific application requirements.

9.2 Modbus protocol introduction

Modbus is a software protocol, a common language used in electronic controllers. By using this protocol, a controller can communicate with other devices through transmission lines. It is a general industrial standard. With this standard, control devices produced by different manufacturers can be connected to form an industrial network and be monitored in a centralized way.

The Modbus protocol provides two transmission modes, namely American Standard Code for Information Interchange (ASCII) and remote terminal units (RTU). On one Modbus network, all the device transmission modes, baud rates, data bits, check bits, end bits, and other basic parameters must be set consistently.

A Modbus network is a control network with one master and multiple slaves, that is, on one Modbus network, there is only one device serving as the master, and other devices are the slaves. The master can communicate with one slave or broadcast messages to all the slaves. For separate access commands, a slave needs to return a response. For broadcasted information, slaves do not need to return responses.

9.3 Application of Modbus

MSI350 series inverters use the RTU mode provided by the Modbus protocol, and RS485 interfaces are used.

9.3.1 RS485

RS485 interfaces work in half-duplex mode and transmit data signals in the differential transmission way, which is also referred to as balanced transmission. An RS485 interface uses a twisted pair, where one wire is defined as A (+), and the other B (-). Generally, if the positive electrical level between the transmission drives A and B ranges from +2 V to +6 V, the logic is "1"; and if it ranges from -2 V to -6

V, the logic is "0".

The 485+ terminal on the terminal block of the inverter corresponds to A, and 485- corresponds to B.

The communication baud rate (P14.01) indicates the number of bits transmitted in a second, and the unit is bit/s (bps). A higher baud rate indicates faster transmission and poorer anti-interference capability. When a twisted pair of 0.56 mm (24 AWG) is used, the maximum transmission distance varies according to the baud rate, as described in the following table.

Baud rate (bps)	Max. transmission distance	Baud rate (bps)	Max. transmission distance	
2400	1800 m	9600	800 m	
4800	1200 m	19200	600 m	

When RS485 interfaces are used for long-distance communication, it is recommended that you use shielded cables, and use the shield layer as the ground wires.

When there are fewer devices and the transmission distance is short, the whole network works well without terminal load resistors. The performance, however, degrades as the distance increases. Therefore, it is recommended that you use a 120 Ω terminal resistor when the transmission distance is long.

5. Application to one inverter

Fig 9.1 is the Modbus wiring diagram of one inverter and a PC. Generally, PCs do not provide RS485 interfaces, so you need to convert an RS232 interface or USB port of a PC to an RS485 interface. Connect end A of the RS485 interface to the 485+ port on the terminal block of the inverter, and connect end B to the 485- port. It is recommended that you use shielded twisted pairs. When an RS232-RS485 converter is used, the cable used to connect the RS232 interface of the PC and the converter cannot be longer than 15 m. Use a short cable when possible. It is recommended that you insert the converter directly into the PC. Similarly, when a USB-RS485 converter is used, use a short cable when possible.

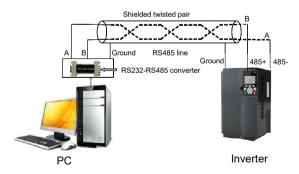


Fig 9.1 Wiring of RS485 applied to one inverter

6. Application to multiple inverters

In practical application to multiple inverters, chrysanthemum connection and star connection are

commonly used.

According to the requirements of the RS485 industrial bus standards, all the devices need to be connected in chrysanthemum mode with one 120 Ω terminal resistor on each end, as shown in Fig 9.2. Fig 9.3 is the simplified wiring diagram, and Fig 9.4 is the practical application diagram.

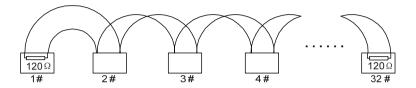


Fig 9.2 On-site chrysanthemum connection diagram

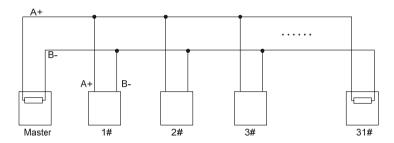


Fig 9.3 Simplified chrysanthemum connection diagram

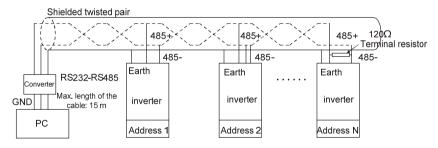


Fig 9.4 Practical application diagram of chrysanthemum connection

Fig 9.5 shows the start connection diagram. When this connection mode is adopted, the two devices that are farthest away from each other on the line must be connected with a terminal resistor (in Fig 9.5, the two devices are devices 1# and 15#).

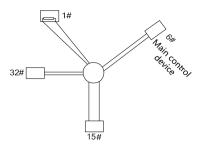


Fig 9.5 Star connection

Use shielded cable, if possible, in multi-device connection. The baud rates, data bit check settings, and other basic parameters of all the devices on the RS485 line must be set consistently, and addresses cannot be repeated.

9.3.2 RTU mode

7. RTU communication frame structure

When a controller is set to use the RTU communication mode on a Modbus network, every byte (8 bits) in the message includes 2 hexadecimal characters (each includes 4 bits). Compared with the ASCII mode, the RTU mode can transmit more data with the same baud rate.

Code system

- 1 start bit
- 7 or 8 data bits; the minimum valid bit is transmitted first. Each frame domain of 8 bits includes 2 hexadecimal characters (0–9, A–F).
- 1 odd/even check bit; this bit is not provided if no check is needed.
- 1 end bit (with check performed), 2 bits (without check)

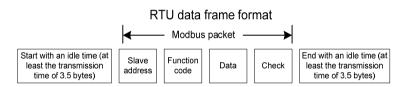
Error detection domain

Cyclic redundancy check (CRC)

The following table describes the data format.

11-bit character frame (Bits 1 to 8 are data bits)

Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	BIT8	Check bit	End bit	
-----------	------	------	------	------	------	------	------	------	--------------	---------	--


10-bit character frame (Bits 1 to 7 are data bits)

Start bit	BIT1	BIT2	BIT3	BIT4	BIT5	BIT6	BIT7	Check bit	End bit
-----------	------	------	------	------	------	------	------	--------------	---------

In a character frame, only the data bits carry information. The start bit, check bit, and end bit are used to facilitate the transmission of the data bits to the destination device. In practical applications, you must set the data bits, parity check bits, and end bits consistently.

In RTU mode, the transmission of a new frame always starts from an idle time (the transmission time of 3.5 bytes). On a network where the transmission rate is calculated based on the baud rate, the transmission time of 3.5 bytes can be easily obtained. After the idle time ends, the data domains are transmitted in the following sequence: slave address, operation command code, data, and CRC check character. Each byte transmitted in each domain includes 2 hexadecimal characters (0–9, A–F). The network devices always monitor the communication bus. After receiving the first domain (address information), each network device identifies the byte. After the last byte is transmitted, a similar transmission interval (the transmission time of 3.5 bytes) is used to indicate that the transmission of the frame ends. Then, the transmission of a new frame starts.

The information of a frame must be transmitted in a continuous data flow. If there is an interval greater than the transmission time of 1.5 bytes before the transmission of the entire frame is complete, the receiving device deletes the incomplete information, and mistakes the subsequent byte for the address domain of a new frame. Similarly, if the transmission interval between two frames is shorter than the transmission time of 3.5 bytes, the receiving device mistakes it for the data of the last frame. The CRC check value is incorrect due to the disorder of the frames, and thus a communication fault occurs.

The following table describes the standard structure of an RTU frame.

START (frame header)	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDD (classe address demain)	Communication address: 0–247 (decimal system) (0 is the
ADDR (slave address domain)	broadcast address)
CMD (function domain)	03H: read slave parameters
CMD (function domain)	06H: write slave parameters
DATA (N-1)	
	Data of 2×N bytes, main content of the communication as well
DATA (0)	as the core of data exchanging
(data domain)	
CRC CHK (LSBs)	Detection value, CDC (46 hite)
CRC CHK high bit (MSBs)	Detection value: CRC (16 bits)
END (frame tail)	T1-T2-T3-T4 (transmission time of 3.5 bytes)

8. RTU communication frame error check modes

During the transmission of data, errors may occur due to various factors. Without check, the data receiving device cannot identify data errors and may make a wrong response. The wrong response may cause severe problems. Therefore, the data must be checked.

The check is implemented as follows: The transmitter calculates the to-be-transmitted data based on a specific algorithm to obtain a result, adds the result to the rear of the message, and transmits them together. After receiving the message, the receiver calculates the data based on the same algorithm to obtain a result, and compares the result with that transmitted by the transmitter. If the results are the same, the message is correct. Otherwise, the message is considered wrong.

The error check of a frame includes two parts, namely, bit check on individual bytes (that is, odd/even check using the check bit in the character frame), and whole data check (CRC check).

Bit check on individual bytes (odd/even check)

You can select the bit check mode as required, or you can choose not to perform the check, which will affect the check bit setting of each byte.

Definition of even check: Before the data is transmitted, an even check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is even, the check bit is set to "0"; and if it is odd, the check bit is set to "1".

Definition of odd check: Before the data is transmitted, an odd check bit is added to indicate whether the number of "1" in the to-be-transmitted data is odd or even. If it is odd, the check bit is set to "0"; and if it is even, the check bit is set to "1".

For example, the data bits to be transmitted are "11001110", including five "1". If the even check is applied, the even check bit is set to "1"; and if the odd check is applied, the odd check bit is set to "0". During the transmission of the data, the odd/even check bit is calculated and placed in the check bit of the frame. The receiving device performs the odd/even check after receiving the data. If it finds that the odd/even parity of the data is inconsistent with the preset information, it determines that a communication error occurs.

CRC check mode

A frame in the RTU format includes an error detection domain based on the CRC calculation. The CRC domain checks all the content of the frame. The CRC domain consists of two bytes, including 16 binary bits. It is calculated by the transmitter and added to the frame. The receiver calculates the CRC of the received frame, and compares the result with the value in the received CRC domain. If the two CRC values are not equal to each other, errors occur in the transmission.

During CRC, 0xFFFF is stored first, and then a process is invoked to process a minimum of 6 contiguous bytes in the frame based on the content in the current register. CRC is valid only for the 8-bit data in each character. It is invalid for the start, end, and check bits.

During the generation of the CRC values, the "exclusive or" (XOR) operation is performed on the each 8-bit character and the content in the register. The result is placed in the bits from the least significant bit (LSB) to the most significant bit (MSB), and 0 is placed in the MSB. Then, LSB is detected. If LSB

is 1, the XOR operation is performed on the current value in the register and the preset value. If LSB is 0, no operation is performed. This process is repeated 8 times. After the last bit (8th bit) is detected and processed, the XOR operation is performed on the next 8-bit byte and the current content in the register. The final values in the register are the CRC values obtained after operations are performed on all the bytes in the frame.

The calculation adopts the international standard CRC check rule. You can refer to the related standard CRC algorithm to compile the CRC calculation program as required.

The following is a simple CRC calculation function for your reference (using the C programming language):

```
unsigned int crc cal value(unsigned charxdata value,unsigned char data length)
      int i;
      unsigned int crc value=0xffff;
      while(data length--)
      {
            crc value^=×data value++;
            for(i=0;i<8;i++)
            {
                  if(crc value&0x0001)
                         crc value=(crc value>>1)^0xa001;
                  else
                         crc value=crc value>>1;
            }
      }
      return(crc value);
```

{

}

In the ladder logic, CKSM uses the table look-up method to calculate the CRC value according to the content in the frame. The program of this method is simple, and the calculation is fast, but the ROM space occupied is large. Use this program with caution in scenarios where there are space occupation limits on programs.

9.4 RTU command code and communication data

9.4.1 Command code: 03H, reading N words (continuously reading a maximum of 16 words)

The command code 03H is used by the master to read data from the inverter. The quantity of data to be read depends on the "data quantity" in the command. A maximum of 16 pieces of data can be read. The addresses of the read parameters must be contiguous. Each piece of data occupies 2 bytes, that is, one word. The command format is presented using the hexadecimal system (a number followed by "H" indicates a hexadecimal value). One hexadecimal value occupies one byte.

The 03H command is used to read information including the parameters and operation state of the inverter.

For example, starting from the data address of 0004H, to read two contiguous pieces of data (that is, to read content from the data addresses 0004H and 0005H), the structure of the frame is described in the following table.

RTU master command (transmitted by the master to the inverter)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)		
ADDR (address)	01H		
CMD (command code)	03H		
Most significant byte (MSB) of the start address	00Н		
Least significant byte (LSB) of the start address	04H		
MSB of data quantity	00H		
LSB of data quantity	02H		
LSB of CRC	85H		
MSB of CRC	CAH		
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)		

The value in START and END is "T1-T2-T3-T4 (transmission time of 3.5 bytes)", indicating that the RS485 needs to stay idle for at least the transmission time of 3.5 bytes. An idle time is required to distinguish on message from another to ensure that the two messages are not regarded as one.

The value of ADDR is 01H, indicating that the command is transmitted to the inverter whose address is 01H. The ADDR information occupies one byte.

The value of CMD is 03H, indicating that the command is used to read data from the inverter. The CMD information occupies one byte.

"Start address" indicates that data reading is started from this address. It occupies two bytes, with the MSB on the left and LSB on the right.

"Data quantity" indicates the quantity of data to be read (unit: word).

The value of "Start address" is 0004H, and that of "Data quantity" is 0002H, indicating that data is to be read from the data addresses of 0004H and 0005H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

RTU slave response (transmitted by the inverter to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	03H
Number of bytes	04H
MSB of data in 0004H	13H
LSB of data in 0004H	88H
MSB of data in 0005H	00H
LSB of data in 0005H	00H
LSB of CRC	7EH
MSB of CRC	9DH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

The definition of the response information is described as follows:

The value of ADDR is 01H, indicating that the message is transmitted by the inverter whose address is 01H. The ADDR information occupies one byte.

The value of CMD is 03H, indicating that the message is a response of the inverter to the 03H command of the master for reading data. The CMD information occupies one byte.

"Number of bytes" indicates the number of bytes between a byte (not included) and the CRC byte (not included). The value 04 indicates that there are four bytes of data between "Number of bytes" and "LSB of CRC", that is, "MSB of data in 0004H", "LSB of data in 0004H", "MSB of data in 0005H", and "LSB of data in 0005H".

A piece of data is two bytes, with the MSB on the left and LSB on the right. From the response, we can see that the data in 0004H is 1388H, and that in 0005H is 0000H.

CRC check occupies two bytes, with the LSB on the left, and MSB on the right.

9.4.2 Command code: 06H, writing a word

This command is used by the master to write data to the inverter. One command can be used to write only one piece of data. It is used to modify the parameters and operation mode of the inverter.

For example, to write 5000 (1388H) to 0004H of the inverter whose address is 02H, the structure of the frame is described in the following table.

RTU master command (transmitted by the master to the inverter)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of to-be-written data	13H
LSB of to-be-written data	88H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (transmitted by the inverter to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	06H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of to-be-written data	13H
LSB of to-be-written data	88H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

Note: The sections 9.2 and 9.3 mainly describes the command formats. For the detailed application, see the examples in section 9.4.8.

9.4.3 Command code: 08H, diagnosis

Sub-function code description

Sub-function code	Description		
0000	Return data based on query requests		

For example, to query about the circuit detection information about the inverter whose address is 01H, the query and return strings are the same, and the format is described in the following tables.

RTU master command

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)		
ADDR	01H		

CMD	08H
MSB of the sub-function code	00H
LSB of the sub-function code	00H
MSB of data	12H
LSB of data	ABH
LSB of CRC CHK	ADH
MSB of CRC CHK	14H
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	01H
CMD	08H
MSB of the sub-function code	00H
LSB of the sub-function code	00H
MSB of data	12H
LSB of data	ABH
LSB of CRC CHK	ADH
MSB of CRC CHK	14H
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

9.4.4 Command code: 10H, continuous writing

The command code 10H is used by the master to write data to the inverter. The quantity of data to be written is determined by "Data quantity", and a maximum of 16 pieces of data can be written.

For example, to write 5000 (1388H) and 50 (0032H) respectively to 0004H and 0005H of the inverter whose slave address is 02H, the structure of the frame is described in the following table.

RTU master command (transmitted by the master to the inverter)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
Number of bytes	04H
MSB of data to be written to 0004H	13H
LSB of data to be written to 0004H	88H
MSB of data to be written to 0005H	00H

LSB of data to be written to 0005H	32H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

RTU slave response (transmitted by the inverter to the master)

START	T1-T2-T3-T4 (transmission time of 3.5 bytes)
ADDR	02H
CMD	10H
MSB of data writing address	00H
LSB of data writing address	04H
MSB of data quantity	00H
LSB of data quantity	02H
LSB of CRC	C5H
MSB of CRC	6EH
END	T1-T2-T3-T4 (transmission time of 3.5 bytes)

9.4.5 Data address definition

This section describes the address definition of communication data. The addresses are used for controlling the running, obtaining the state information, and setting related function parameters of the inverter.

9. Function code address representation rules

The address of a function code consists of two bytes, with the MSB on the left and LSB on the right. The MSB ranges from 00 to ffH, and the LSB also ranges from 00 to ffH. The MSB is the hexadecimal form of the group number before the dot mark, and LSB is that of the number behind the dot mark. Take P05.06 as an example, the group number is 05, that is, the MSB of the parameter address is the hexadecimal form of 05; and the number behind the dot mark is 06, that is, the LSB is the hexadecimal form of 06. Therefore, the function code address is 0506H in the hexadecimal form. For P10.01, the parameter address is 0A01H.

Function code	Name	Detailed parameter description	Setting range	Default value	Modify
P10.00	Simple PLC mode	Stop after running once Keep running in the final value after running once Cyclic running	0-2	0	0
P10.01	Simple PLC memory selection	0: No memory after power down 1: Memory after power down	0-1	0	0

Note:

- The parameters in the P99 group are set by the manufacturer. They cannot be read or modified.
 Some parameters cannot be modified when the inverter is running; some cannot be modified regardless of the state of the inverter. Pay attention to the setting range, unit, and related description of a parameter when modifying it.
- 2. The service life of the Electrically Erasable Programmable Read-Only Memory (EEPROM) may be reduced if it is frequently used for storage. For users, some function codes do not need to be stored during communication. The application requirements can be met by modifying the value of the on-chip RAM, that is, modifying the MSB of the corresponding function code address from 0 to 1. For example, if P00.07 is not to be stored in the EEPROM, you need only to modify the value of the RAM, that is, set the address to 8007H. The address can be used only for writing data to the on-chip RAM, and it is invalid when used for reading data.

10. Description of other function code addresses

In addition to modifying the parameters of the inverter, the master can also control the inverter, such as start and stop it, and monitor the operation state of the inverter. The following table describes other function parameters.

Function	Address	Data description	R/W	
		0001H: Forward running		
		0002H: Reverse running		
		0003H: Forward jogging		
Communication- based control	2000H	0004H: Reverse jogging		
command	200011	0005H: Stop	R/W	
Command		0006H: Coast to stop (emergency stop)		
		0007H: Fault reset		
		0008H: Jogging to stop		
	2001H	Communication-based frequency setting (0-Fmax, unit:		
	200111	0.01 Hz)	R/W	
	2002H	PID setting, range (0-1000, 1000 corresponding to	10,00	
		100.0%)		
	2003H 2004H	PID feedback, range (0-1000, 1000 corresponding to	R/W	
Communication-		100.0%)	1000	
based value		Torque setting (-3000-+3000, 1000 corresponding to	R/W	
setting		100.0% of the rated current of the motor)		
County	2005H	Setting of the upper limit of the forward running frequency	R/W	
		(0–Fmax, unit: 0.01 Hz)		
	2006H	Setting of the upper limit of the reverse running frequency	R/W	
		(0–Fmax, unit: 0.01 Hz)	•	
	2007H	Upper limit of the electromotion torque (0-3000, 1000	I R/W	
	200711	corresponding to 100.0% of the rated current of the		

Function	Address	Data description	R/W
		inverter)	
	000011	Upper limit of the brake torque (0-3000, 1000	D.044
	2008H	corresponding to 100.0% of the rated current of the motor)	R/W
		Special control command word:	
		Bit0–1: =00: Motor 1 =01: Motor 2	
		=10: Motor 3 =11: Motor 4	
		Bit2: =1 Torque control disabled =0: Torque control cannot	
	2009H	be disabled	R/W
		Bit3: =1 Power consumption reset to 0	
		=0: Power consumption not reset	
		Bit4: =1 Pre-excitation =0: Pre-excitation disabled	
		Bit5: =1 DC brake =0: DC brake disabled	
	200AH	Virtual input terminal command, range: 0x000–0x1FF	R/W
	200BH	Virtual output terminal command, range: 0x00–0x0F	R/W
		Voltage setting (used when V/F separation is	
	000011	implemented)	D.04/
	200CH	(0-1000, 1000 corresponding to 100.0% of the rated	R/W
		voltage of the motor)	
	2000	AO output setting 1 (-1000-+1000, 1000 corresponding to	R/W
200DH 100.0%) 200EH AO output setting 2 (-1000—+1000, 1000 correspondence) 100.0%)		100.0%)	R/W
		AO output setting 2 (-1000-+1000, 1000 corresponding to	R/W
		100.0%)	FC/VV
		0001H: Forward running	
		0002H: Reverse running	
Inverter state	2100H	0003H: Stopped	П
word 1	2100H	0004H: Faulty	R
		0005H: POFF	
		0006H: Pre-excited	
		Bit0: =0: Not ready to run =1: Ready to run	
		Bi1–2: =00: Motor 1 =01: Motor 2	
		=10: Motor 3 =11: Motor 4	
Inverter state word 2		Bit3: =0: Asynchronous machine =1: Synchronous	
	2101H	machine	R
		Bit4: =0: No overload alarm =1: Overload alarm	
		Bit5-Bit6: =00: Keypad-based control =01: Terminal-	
		based control	
		=10: Communication-based control	
Inverter fault	2102H	See the description of fault types.	R

Function	Address	Data description		R/W
code				
Inverter				
identification	2103H	MSI350x0109		R
code				
Running	3000H	0. Emay (unit: 0.0147)		R
frequency	300011	0–Fmax (unit: 0.01Hz)		K
Set frequency	3001H	0-Fmax (unit: 0.01Hz)		R
Bus voltage	3002H	0.0-2000.0 V (unit: 0.1V)		R
Output voltage	3003H	0–1200V (unit: 1V)		R
Output current	3004H	0.0-3000.0A (unit: 0.1A)		R
Rotating speed	3005H	0-65535 (unit: 1RPM)		R
Ouptut power	3006H	-300.0-+300.0% (unit: 0.1%)		R
Output torque	3007H	-250.0-+250.0% (unit: 0.1%)		R
Closed-loop setting	3008H	-100.0-+100.0% (unit: 0.1%)		R
Closed-loop feedback	3009H	-100.0-+100.0% (unit: 0.1%)		R
Input state	300AH	000-1FF		R
Output state	300BH	000–1FF		R
Analog input 1	300CH	0.00-10.00V (unit: 0.01V)	Compatible	R
Analog input 2	300DH	0.00-10.00V (unit: 0.01V)	with CHF100A and CHV100	R
Analog input 3	300EH	-10.00–10.00V (unit: 0.01V)		R
Analog input 4	300FH	addresses		R
Read input of high-speed pulse 1	3010H	0.00–50.00kHz (unit: 0.01Hz)		R
Read input of				
high-speed	3011H			R
pulse 2				
Read current				
step of multi-	3012H	0–15		R
step speed				
External length	3013H	0–65535	1	R
External count value	3014H	0–65535		R
Torque setting	3015H	-300.0-+300.0% (unit: 0.1%)		R
Identification code	3016H			R

Function	Address	Data description		R/W
Fault code	5000H			R

The Read/Write (R/W) characteristics indicate whether a function can be read and written. For example, "Communication-based control command" can be written, and therefore the command code 6H is used to control the inverter. The R characteristic indicates that a function can only be read, and W indicates that a function can only be written.

Note: Some parameters in the preceding table are valid only after they are enabled. Take the running and stop operations as examples, you need to set "Running command channel" (P00.01) to "Communication", and set "Communication running command channel" (P00.02) to the Modbus communication channel. For another example, when modifying "PID setting", you need to set "PID reference source" (P09.00) to Modbus communication.

The following table describes the encoding rules of device codes (corresponding to the identification code 2103H of the inverter).

8 MSBs	Meaning	8 LSBs	Meaning
01	MSI	0x08	MSI35 vector inverter
		0x09	MSI35-H1 vector inverter
		0x0a	MSI300 vector inverter
		0xa0	MSI350 vector inverter

9.4.6 Fieldbus scale

In practical applications, communication data is represented in the hexadecimal form, but hexadecimal values cannot represent decimals. For example, 50.12 Hz cannot be represented in the hexadecimal form. In such cases, we can multiply 50.12 by 100 to obtain an integer 5012, and then 50.12 can be represented as 1394H (5012 in the decimal form) in the hexadecimal form.

In the process of multiplying a non-integer by a multiple to obtain an integer, the multiple is referred to as a Fieldbus scale.

The Fieldbus scale depends on the number of decimals in the value specified in "Detailed parameter description" or "Default value". If there are n decimals in the value, the Fieldbus scale m is the nth-power of 10. Take the following table as an example, m is 10.

Function code	Name	Detailed parameter description	Default value
P01.20	Wake-up-from-sleep delay	0.0–3600.0s (valid when P01.19 is 2)	0.0s
D04.04	Destart often never out	0: Restart is disabled	0
P01.21	Restart after power cut	1: Restart is enabled	0

The value specified in "Detailed parameter description" or "Default value" contains one decimal, so the Fieldbus scale is 10. If the value received by the upper computer is 50, the value of "Wake-up-

from-sleep delay" of the inverter is 5.0 (5.0=50/10).

To set the "Wake-up-from-sleep delay" to 5.0s through Modbus communication, you need first to multiply 5.0 by 10 according to the scale to obtain an integer 50, that is, 32H in the hexadecimal form, and then transmit the following write command:

 01
 06
 01 14
 00 32
 49 E7

 Inverter address command
 Write address command address data
 Parameter data
 CRC

After receiving the command, the inverter converts 50 into 5.0 based on the Fieldbus scale, and then sets "Wake-up-from-sleep delay" to 5.0s.

For another example, after the upper computer transmits the "Wake-up-from-sleep delay" parameter read command, the master receives the following response from the inverter:

01030200 3239 91Inverter address command addressRead 2-byte dataParameter dataCRC

The parameter data is 0032H, that is, 50, so 5.0 is obtained based on the Fieldbus scale (50/10=5.0). In this case, the master identifies that the "Wake-up-from-sleep delay" is 5.0s.

9.4.7 Error message response

Operation errors may occur in communication-based control. For example, some parameters can only be read, but a write command is transmitted. In this case, the inverter returns an error message response.

Error message responses are transmitted by the inverter to the master. The following table describes the codes and definitions of the error message responses.

Code	Name	Definition
01H	Invalid command	The command code received by the upper computer is not allowed to be executed. The possible causes are as follows: • The function code is applicable only on new devices and is not implemented on this device. • The slave is in the faulty state when processing this request.
02H	Invalid data address	For the inverter, the data address in the request of the upper computer is not allowed. In particular, the combination of the register address and the number of the to-be-transmitted bytes is invalid.

Code	Name	Definition
03H	Invalid data bit	The received data domain contains a value that is not allowed. The value indicates the error of the remaining structure in the combined request. Note: It does not mean that the data item submitted for storage in the register includes a value unexpected by the program.
04H	Operation failure	The parameter is set to an invalid value in the write operation. For example, a function input terminal cannot be set repeatedly.
05H	Password error	The password entered in the password verification address is different from that set in P03.00.
06H	Data frame error	The length of the data frame transmitted by the upper computer is incorrect, or in the RTU format, the value of the CRC check bit is inconsistent with the CRC value calculated by the lower computer
07H	Parameter read-only	The parameter to be modified in the write operation of the upper computer is a read-only parameter.
08H	Parameter cannot be modified in running	The parameter to be modified in the write operation of the upper computer cannot be modified during the running of the inverter.
09H	Password protection	A user password is set, and the upper computer does not provide the password to unlock the system when performing a read or write operation. The error of "system locked" is reported.

When returning a response, the device uses a function code domain and fault address to indicate whether it is a normal response (no error) or exception response (some errors occur). In a normal response, the device returns the corresponding function code and data address or sub-function code. In an exception response, the device returns a code that is equal to a normal code, but the first bit is logic 1.

For example, if the master device transmits a request message to a slave device for reading a group of function code address data, the code is generated as follows:

0 0 0 0 0 1 1 (03H in the hexadecimal form)

For a normal response, the same code is returned.

For an exception response, the following code is returned:

1 0 0 0 0 1 1 (83H in the hexadecimal form)

In addition to the modification of the code, the slave returns a byte of exception code that describes the cause of the exception. After receiving the exception response, the typical processing of the master device is to transmit the request message again or modify the command based on the fault information.

For example, to set the "Running command channel" (P00.01, the parameter address is 0001H) of the inverter whose address is 01H to 03, the command is as follows:

<u>01</u>	<u>06</u>	<u>00 01</u>	<u>00 03</u>	<u>98 0B</u>
Inverter	Write	Parameter address	Parameter data	CRC

But the setting range of the "Running command channel" is 0 to 2. The value 3 exceeds the setting range. In this case, the inverter returns an error message response as shown in the following:

<u>01</u>	<u>86</u>	<u>04</u>	<u>43 A3</u>
Inverter	Exception	Error code	CRC
address	response code		

The exception response code 86H (generated based on the MSB "1" of the write command 06H) indicates that it is an exception response to the write command (06H). The error code is 04H. From the preceding table, we can see that it indicates the error "Operation failure", which means "The parameter is set to an invalid value in the write operation".

9.4.8 Read/Write operation example

For the formats of the read and write commands, see sections 9.4.1 and 9.4.2.

11. Read command 03H examples

Example 1: Read state word 1 of the inverter whose address is 01H. From the table of other function parameters, we can see that the parameter address of state word 1 of the inverter is 2100H.

The read command transmitted to the inverter is as follows:

<u>01</u>	<u>03</u>	<u>21 00</u>	<u>00 01</u>	<u>8E 36</u>
Inverter address	Read command	Parameter address	Data quantity	CRC

Assume that the following response is returned:

<u>01</u>	<u>03</u>	<u>02</u>	<u>00 03</u>	F8 45
Inverter address	Read command	Number of bytes	Data content	CRC

The data content returned by the inverter is 0003H, which indicates that the inverter is in the stopped state.

Example 2: View information about the inverter whose address is 03H, including "Type of current fault" (P07.27) to "Type of last but four fault" (P07.32) of which the parameter addresses are 071BH to 0720H (contiguous 6 parameter addresses starting from 071BH).

The command transmitted to the inverter is as follows:

<u>03</u>	<u>03</u>	<u>07 1B</u>	<u>00 06</u>	<u>B5 59</u>
Inverter address	Read command	Start address	6 parameters in total	CRC

Assume that the following response is returned:

03	03 OC 00 23	<u>00 23</u>	<u>00 23</u>	<u>00 23</u>	00 23	<u>00 23</u>	5F D2
Inverter	Read Number of Type of command bytes current fault	Type of last fault	Type of last but one fault	Type of last but two fault	Type of last but three fault	Type of last but four fault	CRC

From the returned data, we can see that all the fault types are 0023H, that is, 35 in the decimal form, which means the maladjustment fault (STo)

12. Write command 06H examples

Example 1: Set the inverter whose address is 03H to be forward running. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000H, and 0001H indicates forward running, as shown in the following figure.

Function	Address	Data description	R/W
	<	0001H: Forward running	
		0002H: Reverse running	
		0003H: Forward jogging	
Communication-based	2000H	0004Н: Reverse jogging	DAM
control command	200011	0005H: Stop	R/W
		0006H: Coast to stop (emergency stop)	
		0007H: Fault reset	
		0008H: Jogging to stop	

The command transmitted by the master is as follows:

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
Inverter address	Write command	Parameter address	Forward running	CRC

If the operation is successful, the following response is returned (same as the command transmitted by the master):

<u>03</u>	<u>06</u>	<u>20 00</u>	<u>00 01</u>	<u>42 28</u>
Inverter address	Write	Parameter address	Forward	CRC

Example 2: Set the "Max. output frequency" of the inverter whose address is 03H to 100 Hz.

Function code	Name	Detailed parameter description	Default value	Modi fy
P00.03		Used to set the maximum output frequency of the inverter. It is the basis of frequency setup and the acceleration/deceleration. Setting range Max (P00.04, 10.00) –630.00Hz		0

From the number of decimals, we can see that the Fieldbus scale of the "Max. output frequency" (P00.03) is 100. Multiply 100 Hz by 100. The value 10000 is obtained, and it is 2710H in the hexadecimal form.

The command transmitted by the master is as follows:

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
Inverter address	Write command	Parameter address	Parameter data	CRC

If the operation is successful, the following response is returned (same as the command transmitted by the master):

<u>03</u>	<u>06</u>	<u>00 03</u>	<u>27 10</u>	<u>62 14</u>
Inverter address	Write command	Parameter address	Parameter data	CRC

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

13. Continuously write command 10H examples

Example 1: Set the inverter whose address is 01H to be forward running at the frequency of 10 Hz. Refer to the table of other function parameters, the address of "Communication-based control command" is 2000H, 0001H indicates forward running, and the address of "Communication-based value setting" is 2001H, as shown in the following figure. 10 Hz is 03E8H in the hexadecimal form.

Function	Address	Data description	R/W
Communication- based control command		0001H: Forward running	
	2000H	0002H: Reverse running	D 0.47
		0003H: Forward jogging	R/W
		0004H: Reverse jogging	

Function	Address	Data description	R/W
		0005H: Stop	
		0006H: Coast to stop (emergency stop)	
		0007H: Fault reset	
		0008H: Jogging to stop	
		Communication-based frequency setting (0-Fmax, unit:	
Communication-	2001H	0.01 Hz)	D 444
based value	000011	PID setting, range (0-1000, 1000 corresponding to	R/W
setting	2002H	100.0%)	

In the actual operation, set P00.01 to 2 and P00.06 to 8.

The command transmitted by the master is as follows:

<u>01</u>	<u>10</u>	<u> 20 00</u>	<u>00 02</u>	<u>04</u>	<u>00 01</u>	<u>03 E8</u>	<u>3B 10</u>
Inverter address	Continuous write command	Parameter address	Parameter quantity	Number of bytes	Froward running	10 Hz	CRC

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u> 20 00</u>	<u>00 02</u>	<u>4A 08</u>
Inverter address	Continuous write	Parameter address	Parameter quantity	CRC
	command			

Example 2: Set "Acceleration time" of the inverter whose address is 01H to 10s, and "Deceleration time" to 20s.

Function code	Name	Detailed parameter description	Default value	Modi fy
P00.11	Acceleration time 1	Acceleration time is the time needed for accelerating from 0Hz to Max. output frequency (P00.03).	Depend on model	0
P00.12	Deceleration time 1	Deceleration time is the time needed from decelerating from Max. output frequency (P00.03) to 0Hz. MSI350 series inverter defines four groups of acceleration and deceleration time, which can be selected via multi-function digital input terminals (P05 group). The acceleration/deceleration time of the inverter is the first group by default. Setting range of P00.11 and P00.12: 0.0–3600.0s	-	0

The address of P00.11 is 000B, 10s is 0064H in the hexadecimal form, and 20s is 00C8H in the

hexadecimal form.

The command transmitted by the master is as follows:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>04</u>	<u>00 64</u>	<u>00 C8</u>	<u>F2 55</u>
Inverter address	Continuous write command	Parameter address	Parameter quantity	Number of bytes	10s	20s	CRC

If the operation is successful, the following response is returned:

<u>01</u>	<u>10</u>	<u>00 0B</u>	<u>00 02</u>	<u>30 0A</u>
Inverter address	Continuous write	Parameter address	Parameter quantity	CRC
	command			

Note: In the preceding command description, spaces are added to a command just for explanatory purposes. In practical applications, no space is required in the commands.

14. Modbus communication commissioning example

A PC is used as the host, an RS232-RS485 converter is used for signal conversion, and the PC serial port used by the converter is COM1 (an RS232 port). The upper computer commissioning software is the serial port commissioning assistant Commix, which can be downloaded from the Internet. Download a version that can automatically execute the CRC check function. The following figure shows the interface of Commix.

First, set the serial port to **COM1**. Then, set the baud rate consistently with P14.01. The data bits, check bits, and end bits must be set consistently with P14.02. If the RTU mode is selected, you need to select the hexadecimal form **Input HEX**. To set the software to automatically execute the CRC

function, you need to select **ModbusRTU**, select **CRC16** (**MOMS-DBU SRTU**), and set the start byte to **1**. After the auto CRC check function is enabled, do not enter CRC information in commands. Otherwise, command errors may occur due to repeated CRC check.

The commissioning command to set the inverter whose address is 03H to be forward running is as follows:

 03
 06
 20 00
 00 01
 42 28

 Inverter address address
 Write command command address
 Parameter address
 Forward running command address
 CRC

Note:

- 1. Set the address (P14.00) of the inverter to 03.
- Set "Channel of running commands" (P00.01) to "Communication", and set "Communication channel of running commands" (P00.02) to the Modbus communication channel.
- Click Send. If the line configuration and settings are correct, a response transmitted by the inverter is received as follows:

030620 0000 0142 28Inverter addressWrite command addressParameter addressForward running command addressCRC

9.5 Common communication faults

Common communication faults include the following:

- No response is returned.
- The inverter returns an exception response.

Possible causes of no response include the following:

- The serial port is set incorrectly. For example, the converter uses the serial port COM1, but COM2 is selected for the communication.
- The settings of the baud rates, data bits, end bits, and check bits are inconsistent with those set on the inverter.
- The positive pole (+) and negative pole (-) of the RS485 bus are connected reversely.
- The resistor connected to 485 terminals on the terminal block of the inverter is set incorrectly.

Appendix A Extension cards

A.1 Model definition

<u>EC - PG 5 01 - 05</u>

(1)	\bigcirc \bigcirc	(4)	(5)

Field identifier	Field description	Naming example
1)	Product category	EC: Extension card
		PG: PG card
<u> </u>	Card category	PC: PLC programmable card
2	Card category	IO: IO extension card
		TX: Communication extension card
		Indicates the generation of a technical version by
(3)	Technical version	using odd numbers, for example, 1, 3, and 5 indicate
	rediffical version	the 1 st , 2 nd , and 3 rd generations of the technical
		version.
		01: Incremental PG card + frequency-divide output
	Distinguishing code	02: Sine/Cosine PG card + pulse direction setting +
		frequency-divide output
		03: UVW PG interface + pulse direction setting +
		frequency-divide output
(4)		04: Resolver PG interface + pulse direction setting +
4		frequency-divide output
		05: Incremental PG card + pulse direction setting +
		frequency-divide output
		06: Absolute PG interface + pulse direction setting +
		frequency-divide output
		07: Reserved 2
		00: Passive
)A/	05: 5V
⑤	Working power	12: 12–15 V
		24: 24 V

EC- PC 5 01 - 00

1

2 3 4

Field identifier	Field description	Naming example
1	Product category	EC: Extension card
		IO: IO extension card
	Cond cotomony	TX: Communication extension card
2	Card category	PG: PG card
		PC: PLC programmable card
		Indicates the generation of a technical version by using
3	Technical version	odd numbers, for example, 1, 3, and 5 indicate the 1st,
		2 nd , and 3 rd generations of the technical version.
		01: 10 points, 6 inputs and 4 outputs (2 transistor
4		outputs + 2 relay outputs)
	Distinguishing code	02: 14 points, 8 inputs and 6 outputs (relay outputs)
		03: Reserved
(5)	Special requirement	Reserved

EC - TX 5 01

1 2 3 4

Field identifier	Field description	Naming example
1)	Product category	EC: Extension card
2	Card category	TX: Communication extension card PG: PG card PC: PLC programmable card IO: IO extension card
3	Technical version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, and 5 indicate the 1 st , 2 nd , and 3 rd generations of the technical version.
4	Distinguishing code	01: Bluetooth communication card 02: WIFI communication card 03: PROFIBUS communication card 05: Canopen communication card 06: DeviceNet communication card 07: BACnet communication card 08: EtherCat communication card 09: PROFINET communication card 10: Ethernet/IP communication card

Field identifier	Field description	Naming example
		11: CAN master/slave control communication card

EC- IO 5 01 - 00

1	(2)	3	(4)	(5
(<u>-</u>)	$\overline{}$		(<u>-</u>)	<u></u>

Field identifier	Field description	Naming example				
1	Product category	EC: Extension card				
2	Card category	IO: IO extension card TX: Communication extension card PG: PG card PC: PLC programmable card				
3	Technical version	Indicates the generation of a technical version by using odd numbers, for example, 1, 3, and 5 indicate the 1 st , 2 nd , and 3 rd generations of the technical version.				
4	Distinguishing code	01: Multiple-function I/O extension card (4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and 2 relay outputs) 02: Digital I/O card 03: Analog I/O card 04: Reserved 1 05: Reserved 2				
(5)	Special requirement					

The following table describes extension cards that MSI350 series inverters support. The extension cards are optional and need to be purchased separately

Name	Model	Specification
IO extension card	EC-IO501-00	 ♦ 4 digital inputs ♦ 1 digital output ♦ 1 analog input ♦ 1 analog output ♦ 2 relay outputs: 1 double-contact output, and 1 single-contact output
Programmable extension card	EC-PC501-00	 Adopting the global mainstream development environment PLC, supporting multiple types of programming languages, such as the instruction language, structural text, function block diagram,

Name	Model	Specification
		ladder diagram, continuous function chart, and
		sequential function chart
		♦ Supporting breakpoint commissioning
		♦ Providing user program storage space of 128 kB, and
		data storage space of 64 kB
		♦ 6 digital inputs
		♦ 2 relay outputs: 1 double-contact output, and 1 single-
		contact output
		♦ With MORGENSEN's mobile phone APP, you can set
		the parameters and monitor the states of the inverter
		through Bluetooth
Bluetooth	EC-TX501-1	→ The maximum communication distance in open
communication card	EC-TX501-2	environments is 30 m.
		♦ EC-TX501-1 is equipped with a built-in antenna and
		applicable to molded case machines.
		♦ EC-TX501-2 is configured with an external sucker
		antenna and applicable to sheet metal machines.
		→ Meeting IEEE802.11b/g/n
		♦ With MORGENSEN's mobile phone APP, you can
		monitor the inverter locally or remotely through WIFI
		communication
WIFI communication	EC-TX502-1	
card	EC-TX502-2	environments is 30 m.
		♦ EC-TX501-1 is equipped with a built-in antenna and
		applicable to molded case machines.
		♦ EC-TX501-2 is configured with an external sucker
		antenna and applicable to sheetmetal machines.
Ethernet		MORGENSEN's internal protocol
communication card	EC-TX504	♦ Can be used in combination with MORGENSEN's
communication card		upper computer monitoring software MORGENSEN
		Studio
CANopen	EC-TX505	♦ Based on the CAN2.0A physical layer
communication card	EC-17000	
CAN master/slave		♦ Based on the CAN2.0B physical layer
control	EC-TX511	
communication card		proprietary protocol

Name	Model	Specification
PROFIBUS-DP EC-TX503		A C C C DOCUMENT
communication card	EC-1X503	♦ Supporting the PROFIBUS-DP protocol
PROFINET	E0 TV500	A O C U PROFINET A A
communication card	EC-TX509	Supporting the PROFINET protocol
		♦ Applicable to OC encoders of 5 V or 12 V
		Applicable to push-pull encoders of 5 V or 12 V
Multi-function	EC-PG505-12	
incremental PG card	EC-PG505-12	Supporting the orthogonal input of A, B, and Z
	EC-PG505-24	♦ Applicable to 24V OC encoders
		Applicable to 24 V push-pull encoders
24V incremental PG		♦ Applicable to 5 V differential encoders
card		
		Applicable to differential encoders of 5 V
UVW incremental PG		
card	EC-PG503-05	
Caru		
		♦ Supporting the input of pulse string reference
		♦ Applicable to resolver encoders
Resolver PG card	EC-PG504-00	Supporting frequency-divided output of resolver-
		simulated A, B, Z
	·	♦ Applicable to Sin/Cos encoders with or without CD
Sin/Cos PG card	EC-PG502	signals
Sin/Cos PG card	EU-PG302	
		♦ Supporting pulse string reference input

IO extension card EC-IO501-00

Programmable extension card EC-PC501-00

Bluetooth/WIFI communication card EC-TX501-1/502

Ethernet communication card EC-TX504

CANopen communication card EC-TX505/511

PROFIBUS-DP communication card EC-TX503

PROFINET communication card

EC-TX509

Multi-function incremental PG card EC-PG505-12

24V incremental PG card FC-PG505-24

UVW incremental PG card

Resolver PG card EC-PG504-00

Sin/Cos PG card EC-PG502

EC-PG503-05

A.2 Dimensions and installation

All extension cards are of the same dimensions (108 mm \times 39 mm) and can be installed in the same way.

Following the following operation principles when installing or removing an extension card:

- 1. Ensure that no power is applied before installing the extension card.
- 2. The extension card can be installed in any one of the SLOT1, SLOT2, and SLOT3 card slots.
- Inverters of 5.5 kW or lower can be configured with two extension cards at the same time, and those of 7.5 kW or higher can be configured with three extension cards.
- 4. If interference occurs on the external wires after extension cards are installed, change their installation card slots flexibly to facilitate the wiring. For example, the connector of the connection cable of the DP card is large, so it is recommended to be installed in the SLOT1 card slot.
- 5. To ensure high anti-interference capability in closed-loop control, you need to use a shielding wire in the encoder cable and ground the two ends of the shielding wire, that is, connect the shielding layer to the housing of the motor on the motor side, and connect the shielding layer to the PE terminal on the PG card side.

Fig A.1 shows the installation diagram and an inverter with extension cards installed.

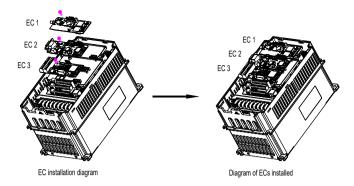


Fig A.1 Inverter of 7.5 kW or higher with extension cards installed

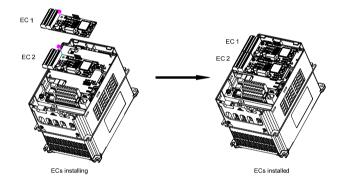


Fig A.2 Inverter of 5.5 kW or lower with extension cards installed

Extension card installation process:

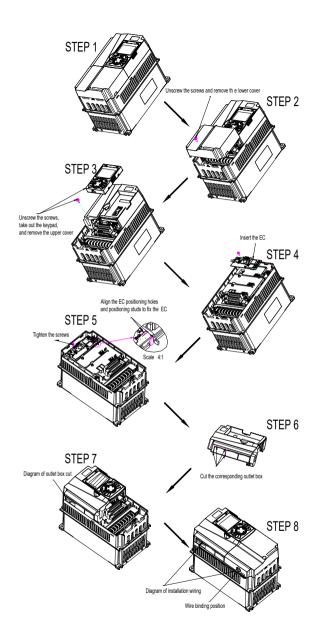


Fig A.3 Extension card installation process diagram

A.3 Wiring

Ground a shielded cable as follows:

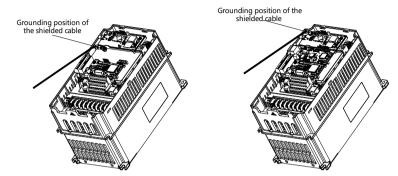


Fig A.4 Extension card grounding diagram

2. Wire an extension card as follows:

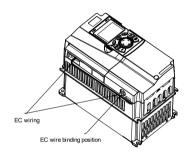
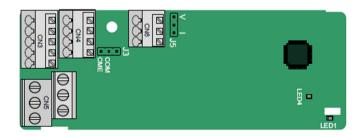



Fig A.5 Extension card wiring

A.4 IO extension card function description

A.4.1 IO extension card—EC-IO501-00

The terminals are arranged as follows:

CME and COM are shorted through J3 before delivery, and J5 is the jumper for selecting the output type (voltage or current) of AO2.

	Al3	AO2	GND										
ı]	1		.					
	COM	CME	Y2	S5			RO3A	4	RO	BB	RC	O3C	
	PW	+24V	S6	S7	S8			R	O4A			RO	40

Indicator definition

Indicator No.	Definition	Function
		This indicator is on when the extension card is
		establishing a connection with the control
		board; it blinks periodically after the extension
LED1	State indicator	card is properly connected to the control board
		(the period is 1s, on for 0.5s, and off for the
		other 0.5s); and it is off when the extension
		card is disconnected from the control board.
LEDA	Dawas in diaatas	This indicator is on after the IO extension card
LED4	Power indicator	is powered on by the control board.

The EC-IO501-00 extension card can be used in scenarios where the I/O interfaces of a MSI350 inverter cannot meet the application requirements. It can provide 4 digital inputs, 1 digital output, 1 analog input, 1 analog output, and two relay outputs. It is user-friendly, providing relay outputs through European-type screw terminals and other inputs and outputs through spring terminals.

EC-IO501-00 terminal function description

Category	Label	Name	Function description
			The working power of digital input is provided
Power		External newer	by an external power supply.
	PW	External power	Voltage range: 12–24 V
		supply	The terminals PW and +24V are shorted before
			delivery.
	AI3—GND	Analog input 1	1. Input range: 0–10 V, 0–20 mA
Amalan			2. Input impedance: 20 kΩ for voltage input;
Analog input/output			250 Ω for current input
			3. Set it to be voltage or current input through
			the corresponding function code.

Category	Label	Name	Function description				
			4. Resolution: When 10 V corresponds to 50				
			Hz, the minimum resolution is 5 mV.				
			5. Deviation:±0.5%; input of 5 V or 10 mA or				
			higher at the temperature of 25°C				
			1. Output range: 0–10 V, 0–20 mA				
	AO2—		2. Whether it is voltage or current output is				
	GND	Analog output 1	determined by J5.				
	GND		3. Deviation ±0.5%; input of 5 V or 10 mA or				
			higher at the temperature of 25°C				
	S5—COM	Digital input 1	1. Internal impedance: 3.3 kΩ				
	S6—COM	Digital input 2	2. Power input range: 12–30 V				
	S7—COM	Digital input 3	Bidirectional input terminal Max. input frequency: 1 kHz				
Digital	S8—COM	Digital input 4					
input/output			1. Switch capacity: 200 mA/30 V				
	Y2—CME	Digital output	2. Output frequency range: 0–1 kHz				
	Y2—CIVIE		3. The terminals CME and COM are shorted				
			through J3 before delivery.				
	R03A	NO contact of					
	1100/1	relay 3					
	R03B	NC contact of					
	11000	relay 3	1. Contact capacity: 3A/AC 250 V, 1 A/DC 30 V				
Relay	R03C	Common contact	Contact capacity. SA/AC 250 V, 1 A/DC 30 V Do not use them as high-frequency digital				
output	11030	of relay 3	outputs.				
	R04A	NO contact of	outputo.				
	11047	relay 4					
	R04C	Common contact					
	11040	of relay 4					

A.5 PG extension card function description

A.5.1 Multi-function incremental PG card—EC-PG505-12

The terminals are arranged as follows:

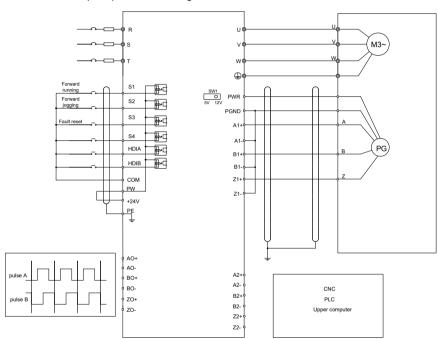
The dual in-line package (DIP) switch SW1 is used to set the voltage class (5 V or 12 V) of the power supply of the encoder. The DIP switch can be operated with an auxiliary tool.

PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AO-	ВО-	ZO-	A1-	B1-	Z1-	A2-	B2-	Z2-	PGND

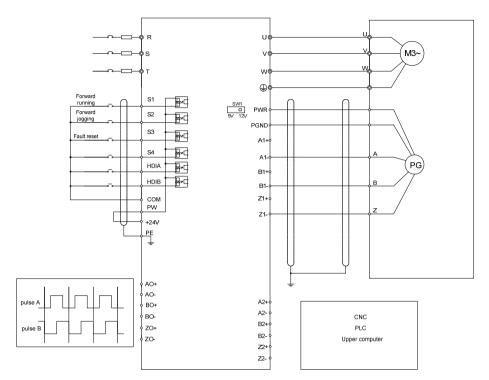
Indicator definition

Indicator No.	Definition	Function
LED1	State indicator	This indicator is on when the extension card is establishing a connection with the control board; it blinks periodically after the extension card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the extension card is disconnected from the control
LED2	Disconnection indicator	board. This indicator is off when A1 and B1 of the encoder is disconnected; and it is on when the pulses are normal.
LED3	Power indicator	This indicator is on after the control board feeds power to the PG card.

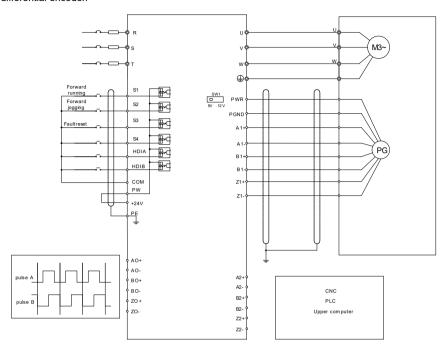
The EC-PG505-12 extension card can be used in combination with multiple types of incremental encoders through different modes of wiring. It is user-friendly, adopting spring terminals.


EC-PG505-12 terminal function description

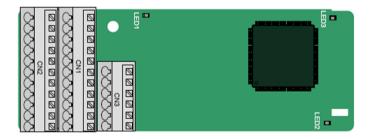
Label	Name	Function description			
PWR		Voltage: 5 V/12 V ±5%			
		Max. output: 150 mA			
PGND	Encoder power	Select the voltage class through the DIP switch			
PGND		SW1 based on the voltage class of the used			
		encoder.			
A1+					
A1-		1. Supporting push-pull interfaces of 5 V/12 V			
B1+	Encoder interface	2. Supporting open collector interfaces of 5 V/12 V			
B1-		3. Supporting differential interfaces of 5 V			
Z1+		4. Response frequency: 200 kHz			
Z1-					
A2+					
A2-					
B2+	.	Supporting the same signal types as the encoder			
B2-	Pulse setting	signal types			
Z2+		2. Response frequency: 200 kHz			
Z2-					
AO+		1. Differential output of 5 V			
AO-	Frequency-divided	2. Supporting frequency division of 1–255, which			
BO+	output	can be set through P20.16 or P24.16			


Label	Name	Function description
ВО-		
ZO+		
ZO-		

The following figure shows the external wiring of the extension card used in combination with an open collector encoder. A pull-up resistor is configured inside the PG card.



The following figure shows the external wiring of the extension card used in combination with a pushpull encoder.



The following figure shows the external wiring of the extension card used in combination with a differential encoder.

A.5.2 UVW incremental PG card—EC-PG503-05

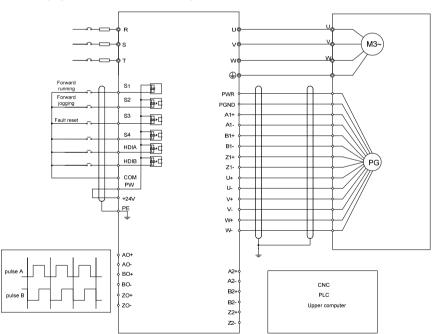
The terminals are arranged as follows:

					A2+	A2-	B2+	B2-	Z2+	Z2-
PE	AO+	BO+	ZO+	A1+	B1+	Z1+	U+	V+	W+	PWR
GND	AO-	ВО-	ZO-	A1-	B1-	Z1-	U-	V-	W-	PGND

Indicator definition

Indicator No.	Definition	Function
LED1	State indicator	This indicator is on when the extension card is establishing a connection with the control board; it blinks periodically after the extension card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the extension card is disconnected from the control board.
LED2	Disconnection indicator	This indicator is off when A1 and B1 of the encoder is disconnected; and it is on when the pulses are normal.
LED3	Power indicator	This indicator is on after the control board feeds power to the PG card.

The EC-PG503-05 extension card supports the input of absolute position signals and integrates the advantages of absolute and incremental encoders. It is user-friendly, adopting spring terminals.


EC-PG503-05 terminal function description

Label	Name	Function description				
PWR		Voltage: 5 V±5% Max. current: 200 mA				
PGND	Encoder power					
A1+						
A1-						
B1+	Encoder interface	1. Differential incremental PG interface of 5 V				
B1-	Encoder interface	2. Response frequency: 400 kHz				
Z1+						
Z1-						
A2+						
A2-						
B2+	5.1	1. Differential input of 5 V				
B2-	Pulse setting	2. Response frequency: 200 kHz				
Z2+						
Z2-						
AO+	Frequency-divided	1. Differential output of 5 V				

Label	Name	Function description
AO-	output	2. Supporting frequency division of 1–255, which
BO+		can be set through P20.16 or P24.16
BO-		
ZO+		
ZO-		
U+		
U-		
V+	10.00/	1. Absolute position (UVW information) of the hybrid
V-	UVW encoder interface	encoder, differential input of 5 V 2. Response frequency: 40 kHz
W+		2. Response megasney. To Kriz
W-		

The following figure shows the external wiring of the EC-PG503-05 extension card.

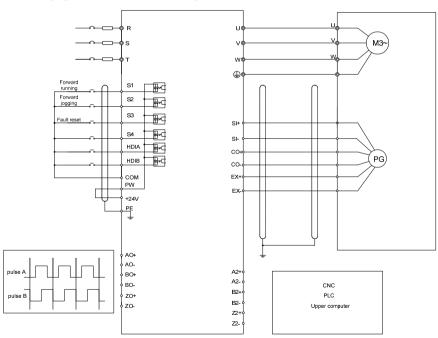
A.5.3 Resolver PG card-EC-PG504-00

PE	AO+	BO+	ZO+	EX+	SI+	CO+	A2+	B2+	Z2+	PWR
GND	AO-	ВО-	ZO-	EX-	SI-	CO-	A2-	B2-	Z2-	PGND

Indicator definition

Indicator No.	Definition	Function
LED1	State indicator	This indicator is on when the extension card is establishing a connection with the control board; it blinks periodically after the extension card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the extension card is disconnected from the control board.
LED2	Disconnection indicator	This indicator is off when the encoder is disconnected; it is on when the encoder signals are normal; and it blinks when the encoder signals are not stable.
LED3	Power indicator	This indicator is on after the control board feeds power to the PG card.

The EC-PG504-00 extension card can be used in combination with a resolver of excitation voltage 7 Vrms. It is user-friendly, adopting spring terminals.


EC-PG504-00 terminal function description

Label	Name	Function description		
SI+				
SI-				
CO+	Encoder signal input	Recommended resolver transformation ratio: 0.5		
CO-				
EX+	Encoder excitation	1. Factory setting of excitation: 10 kHz		
EX-	signal	2. Supporting resolvers with an excitation voltage of		

Label	Name	Function description			
		7 Vrms			
A2+					
A2-	Pulse setting				
B2+		1. Differential input of 5 V			
B2-		2. Response frequency: 200 kHz			
Z2+					
Z2-					
AO+		1. Differential output of 5 V			
AO-		2. Frequency-divided output of resolver simulated			
BO+	Fraguanay dividad	A1, B1, and Z1, which is equal to an incremental			
ВО-	Frequency-divided output	PG card of 1024 pps.			
ZO+		3. Supporting frequency division of 1–255, which			
70		can be set through P20.16 or P24.16			
ZO-		4. Max. output frequency: 200 kHz			

The following figure shows the external wiring of the EC-PG504-00 extension card.

A5.4 24 V multi-function incremental PG card——EC-PG505-24

The terminals are arranged as follows:

PE	AO	ВО	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AGND	ZO	A1-	B1-	Z1-	A2-	B2-	Z2-	AGND

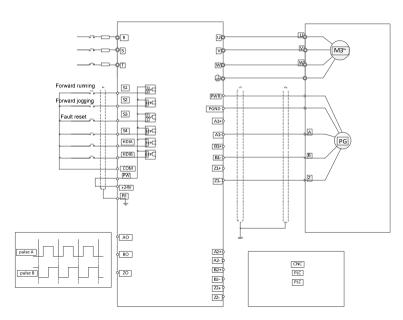
Definitions of indicators

Indicator No.	Definition	Function
LED1		This indicator is on when the extension card is establishing a
		connection with the control board; it blinks periodically after the
	State indicator	extension card is properly connected to the control board (the
		period is 1s, on for 0.5s, and off for the other 0.5s); and it is off
		when the extension card is disconnected from the control board.
LED2		This indicator is off when A1 and B1 of the encoder are
	Disconnection	disconnected; it is on when the encoder pulses are normal; and
	indicator	it blinks when an exception occurs in the communication
		between the encoder and control board.
LED3	Power	This indicator is on after the control board feeds power to the PG
	indicator	card.

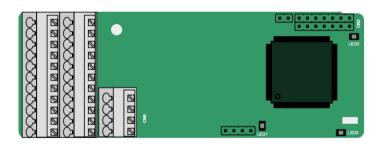
EC-PG505-24 can work in combination with multiple types of incremental encoders through various external wiring modes. It is user-friendly, adopting spring terminals.


EC-PG505-24 terminal function description

Label Name		Function description
PWR	Encoder power	Voltage: 24 V ± 5%
PGND	supply	Max. output current: 150 mA
A1+		
A1-		1. Supporting 24 V push-pull interfaces
B1+	Encoder interface	2. Supporting 24 V open collector interfaces
B1-]	3. Frequency response: 200 kHz


Label	Name	Function description
Z1+		
Z1-		
A2+		
A2-		
B2+		Supporting interfaces whose signal type is the
B2-	Pulse reference	same as the encoder
Z2+		2. Frequency response: 200 kHz
Z2-		
AO	For any and district	Open-drain collector output
ВО	Frequency-divided	2. Supporting frequency division of 1–255, which can
ZO	output	be set through P20.16 or P24.16

The following figure shows the external wiring of the PG card when it is used in combination with an open-drain collector encoder. A pull-up resistor is configured in the PG card.



The following figure shows the external wiring of the PG card when it is used in combination with a push-pull encoder.

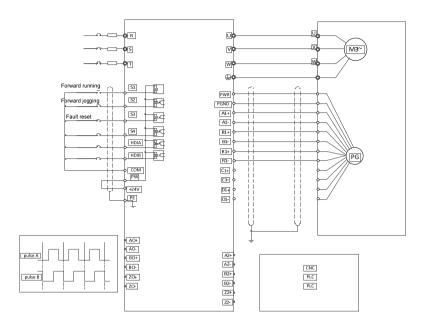
A5.5 Sin/Cos PG card—EC-PG502

The terminals are arrange as follows:

PE	AO+	BO+	ZO+	A1+	B1+	Z1+	A2+	B2+	Z2+	PWR
GND	AO-	ВО-	ZO-	A1-	B1-	Z1-	A2-	B2-	Z2-	GND
							C1+	C1-	D1+	D1-

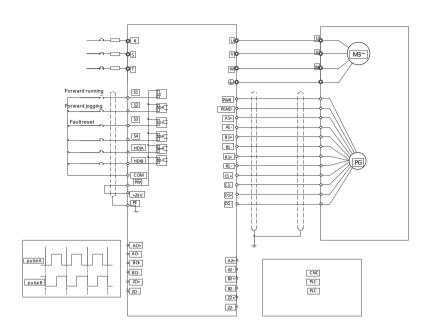
Definitions of indicators

Indicator No.	Definition	Function
LED1	State indicator	This indicator is on when the extension card is establishing a connection with the control board; it blinks periodically after the


Indicator No.	Definition	Function
		extension card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the extension card is disconnected from the control board.
LED2	Power indicator	This indicator is on after the control board feeds power to the PG card.
LED3	Disconnection indicator	This indicator is off when A1 and B1 of the encoder are disconnected; it blinks when C1 and D1 of the encoder are disconnected; and it is on the encoder signals are normal.

EC-PG502 terminal function description

Label	Name	Function description
PWR	Facedon neces	Voltage: 5 V ± 5%
PGND	Encoder power	Max. output current: 150 mA
A1+		
A1-		
B1+		1. 0. 10
B1-		1. Supporting Sin/Cos encoders
R1+	Encoder	2. SINA/SINB/SINC/SIND 0.6–1.2Vpp; SINR 0.2–
R1-	interface	0.85Vpp 3. Max. frequency response of A/B signals: 200 kHz
C1+		Max. frequency response of C/D signals: 1 kHz
C1-		Max. frequency response of C/D signals. T kHz
D1+		
D1-		
A2+		
A2-		
B2+	Pulse reference	Supporting interfaces whose signal type is the same
B2-	Pulse reference	as the encoder
Z2+		2. Frequency response: 200 kHz
Z2-		
AO+		
AO-		1. Differential output of 5 V
BO+	Frequency-	2. Supporting frequency division of 2 ^N , which can be set
BO-	divided output	through P20.16 or P24.16; Max. output frequency: 200
ZO+		kHz
ZO-		


The following figure shows the external wiring of the PG card when it is used in combination with an encoder without CD signals.

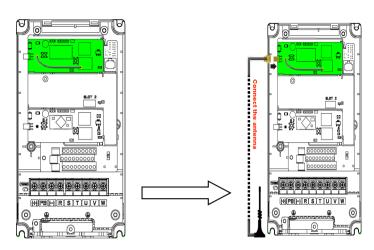
The following figure shows the external wiring of the PG card when it is used in combination with an encoder with CD signals.

A.6 Communication card function description

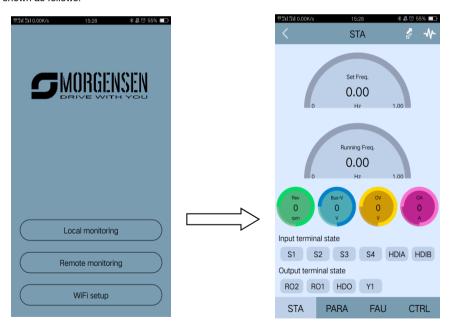
A.6.1 Bluetooth communication card—EC-TX501 and WIFI communication card—EC-TX502

Definitions of indicators and function buttons:

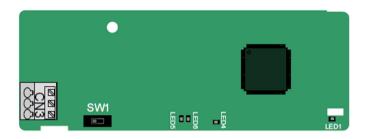
Indicator No.	Definition	Function
LED1/LED3	Bluetooth/WIFI state indicator	LED1 is on when the extension card is establishing a connection with the control board; LED1 blinks periodically after the extension card is properly



Indicator No.	Definition	Function
		connected to the control board (the period is 1s, on
		for 0.5s, and off for the other 0.5s); and LED1 is off
		when the extension card is disconnected from the
		control board.
LED2	Bluetooth communication state indicator	This indicator is on when Bluetooth communication is online and data exchange can be performed. It is off when Bluetooth communication is not in the online state.
LED5	Power indicator	This indicator is on after the control board feeds power to the Bluetooth card.
SW1	WIFI factory reset button	It is restored to default values and returned to the local monitoring mode.
SW2	WIFI hardware reset button	It is used to reboot the extension card.


The wireless communication card is especially useful for scenarios where you cannot directly use the keypad to operate the inverter due to the restriction of the installation space. With a mobile phone APP, you can operate the inverter in a maximum distance of 30 m. You can choose a PCB antenna or an external sucker antenna. If the inverter is located in an open space and is a molded case machine, you can use a built-in PCB antenna; and if it is a sheetmetal machine and located in a metal cabinet, you need to use an external sucker antenna.

When installing a sucker antenna, install a wireless communication card on the inverter first, and then lead the SMA connector of the sucker antenna into the inverter and screw it to CN2, as shown in the following figure. Place the antenna base on the chassis and expose the upper part. Try to keep it unblocked.



The wireless communication card must be used with the MORGENSEN Inverter APP. For details, refer to the wireless communication card manual provided with the extension card. The main interface is shown as follows.

A.6.2 CANopen communication card—EC-TX505 and CAN master/slave control communication card EC-TX511

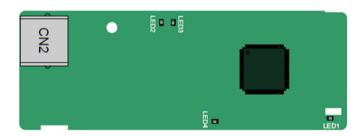
The EC-TX505 communication card is user-friendly, adopting spring terminals.

3-pin spring terminal	Pin	Function	Description
	1	CANH	CANopen bus high level signal
	2	CANG	CANopen bus shielding
	3	CANL	CANopen bus low level signal

Terminal resistor switch function description

Terminal resistor switch	Position	Function	Description
	Left	OFF	CAN_H and CAN_L are not connected
	Leit	OFF	to a terminal resistor.
	Dimba	ON	CAN_H and CAN_L are connected to
	Right	ON	a terminal resistor of 120 Ω .

Indicator definition

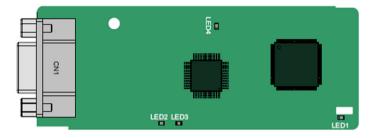

Indicator No.	Definition	Function
		This indicator is on when the extension card is
		establishing a connection with the control board; it
	State indicator	blinks periodically after the extension card is
LED1		properly connected to the control board (the period
		is 1s, on for 0.5s, and off for the other 0.5s); and it
		is off when the extension card is disconnected
		from the control board.
LEDA	Danie dia da	This indicator is on after the control board feeds
LED4	Power indicator	power to the communication card.
LED5	Running indicator	This indicator is on when the communication card

Indicator No.	Definition	Function
		is in the working state.
		It is off when a fault occurs. Check whether the
		reset pin of the communication card and the power
		supply are properly connected.
		It blinks when the communication card is in the
		pre-operation state.
		It blinks once when the communication card is in
		the stopped state.
		This indicator is on when the CAN controller bus is
		off or a fault occurs on the inverter.
		It is off when the communication card is in the
LED6	Error indicator	working state.
		It blinks when the address setting is incorrect.
		It blinks once when a received frame is missed or
		an error occurs during frame receiving.

For details about the operation, see the MSI350 Series Inverter Communication Extension Card Operation Manual.

A.6.3 Ethernet communication card—EC-TX504

The EC-TX504 communication card adopts standard RJ45 terminals.


Indicator definition

Indicator No.	Definition	Function
LED1		This indicator is on when the extension card is
		establishing a connection with the control board; it
		blinks periodically after the extension card is
	State indicator	properly connected to the control board (the period
		is 1s, on for 0.5s, and off for the other 0.5s); and it
		is off when the extension card is disconnected
		from the control board.



Indicator No.	Definition	Function
LED4	Power indicator	This indicator is on after the control board feeds
LED4	Power indicator	power to the communication card.

A.6.4 PROFIBUS-DP communication card—EC-TX503

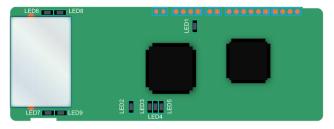
CN1 is a 9-pin D-type connector, as shown in the following figure.

Con	nector pin	Description
1	-	Unused
2	-	Unused
3	B-Line	Data+ (twisted pair 1)
4	RTS	Request sending
5	GND_BUS	Isolation ground
6	+5V BUS	Isolated power supply of 5 V DC
7	-	Unused
8	A-Line	Data- (twisted pair 2)
9	-	Unused
Housing	SHLD	PROFIBUS cable shielding line

⁺⁵V and GND_BUS are bus terminators. Some devices, such as the optical transceiver (RS485), may need to obtain power through these pins.

On some devices, the transmission and receiving directions are determined by RTS. In normal applications, only A-Line, B-Line, and the shield layer need to be used.

Indicator definition



Indicator No.	Definition	Function
LED1	State indicator	This indicator is on when the extension card is establishing a connection with the control board; it blinks periodically after the extension card is properly connected to the control board (the period is 1s, on for 0.5s, and off for the other 0.5s); and it is off when the extension card is disconnected from the control board.
LED2	Online indicator	This indicator is on when the communication card is online and data exchange can be performed. It is off when the communication card is not in the online state.
LED3	Offline/Fault indicator	This indicator is on when the communication card is offline and data exchange cannot be performed. It blinks when the communication card is not in the offline state. It blinks at the frequency of 1 Hz when a configuration error occurs: The length of the user parameter data set during the initialization of the communication card is different from that during the network configuration. It blinks at the frequency of 2 Hz when user parameter data is incorrect: The length or content of the user parameter data set during the initialization of the communication card is different from that during the network configuration. It blinks at the frequency of 4 Hz when an error occurs in the ASIC initialization of PROFIBUS communication. It is off when the diagnosis function is disabled.
LED4	Power indicator	This indicator is on after the control board feeds power to the communication card.

For details about the operation, see the MSI350 Series Inverter Communication Extension Card Operation Manual.

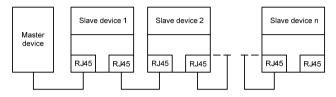
A.6.5 PROFINET communication card——EC- TX509

The terminal CN2 adopts a standard RJ45 interface, where CN2 is the dual RJ45 interface, and these two RJ45 interfaces are not distinguished from each other and can be interchangeably inserted. They are arranged as follows:

Pin	Name	Description
1	n/c	Not connected
2	n/c	Not connected
3	RX-	Receive Data-
4	n/c	Not connected
5	n/c	Not connected
6	RX+	Receive Data+
7	TX-	Transmit Data-
8	TX+	Transmit Data+

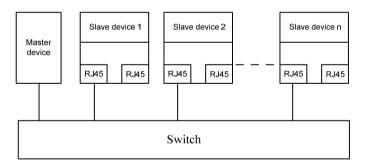
Definition of the state indicator

The PROFINET communication card has 9 indicators, of which LED1 is the power indicator, LED2–5 are the communication state indicators of the communication card, and LED6–9 are the state indicators of the network port.


LED	Color	State	Description
LED1	Green		3.3V power indicator
		On	No network connection
LED2 (Bus state indicator)	Red	Blinking	The connection to the network cable between the Profinet controller is OK, but the communication is not established.
		Off	Communication with the Profinet controller has been established
LED3	0	On	Profinet diagnosis exists
(System fault indicator)	Green	Off	No Profinet diagnosis
1504		On	TPS-1 protocol stack has started
LED4	Green	Blinking	TPS-1 waits for MCU initialization
(Slave ready indicator)		Off	TPS-1 protocol stack does not start
LED5 (Maintenance state indicator)	Green		Manufacturer-specific - depending on the characteristics of the device
LED6/7 (Network port state	Green	On	PROFINET communication card and PC/PLC have been connected via a network cable
indicator)		Off	PROFINET communication card and PC/PLC have not been connected yet

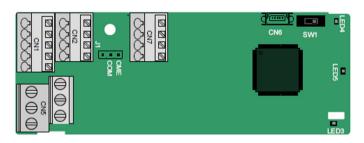
LED	Color	State	Description
1 ED0/0		Diin bin n	PROFINET communication card and
LED8/9	0	Blinking	PC/PLC are communicating
(Network port	Green	0#	PROFINET communication card and
communication indicator)		Off	PC/PLC are not yet communicating

Electrical connection:


The Profinet communication card adopts a standard RJ45 interface, which can be used in a linear network topology and a star network topology. The linear network topology electrical connection diagram is shown below.

Linear network topology electrical connection diagram

Note: For the star network topology, users need to prepare Profinet switches.


The star network topology electrical connection diagram is shown below:

A.7 Programmable extension card function description

A.7.1 Programmable extension card—EC-PC501-00

The terminals are arranged as follows:

SW1 is the start/stop switch of the programmable extension card. CN6 is the program download port, and you can connect to a computer by using a standard USB cable. COM and CME are shorted through J1 before delivery.

PY1	PY2	CME	СОМ	
		,		•
COM	PS1	PS2	PS3	
PW	+24V	PS4	PS5	PS6

PF	RO1A	F	PRO1B	PRO1C
	PRO2A			PRO2C

Indicator definition

Indicator No.	Definition	Function
		This indicator is on when the extension card is establishing a connection with the control board; it
LED3	State indicator	blinks periodically after the extension card is properly connected to the control board (the
LEDS	State indicator	period is 1s, on for 0.5s, and off for the other
		0.5s); and it is off when the extension card is disconnected from the control board.
LED4	PLC running state indicator	This indicator is on when the DIP switch is turned to RUN (run the PLC); and it is off when the switch is turned to STOP (stop the PLC).
LED5	Power indicator	This indicator is on after the control board feeds power to the communication card.

The EC-PC501-00 programmable extension card can replace some micro PLC applications. It adopts the global mainstream development environment PLC, supporting six types of programming languages, namely the instruction language (IL), structural text (ST), function block diagram (FBD), ladder diagram (LD), continuous function chart (CFC), and sequential function chart (SFC). It provides a user program storage space of 128 kB and data storage space of 64 kB, which facilitates customers' secondary development and meets the customization requirements.

The EC-PC501-00 programmable extension card provides 6 digital inputs, 2 digital outputs, and 2 relay outputs. It is user-friendly, providing relay outputs through European-type screw terminals and other inputs and outputs through spring terminals.

EC-PC501-00 terminal function description

Category	Label	Name	Function description
Power	PW	External power	The working power of digital input is provided by an external power supply.
			Voltage range: 12–24 V

Category	Label	Name	Function description
			The terminals PW and +24V are shorted
			before delivery.
	PS1—COM	Digital input 1	
	PS2—COM	Digital input 2	1. Internal impedance: 3.3 kΩ
	PS3—COM	Digital input 3	2. Allowable voltage input: 12–30 V
	PS4—COM	Digital input 4	3. Bidirectional terminal
Digital	PS5—COM	Digital input 5	4. Max. input frequency: 1 kHz
input/output	PS6—COM	Digital input 6	
	PY1—CME	Digital output 1	1. Switch capacity: 200 mA/30 V
			2. Output frequency range: 0–1 kHz
	PY2—CME	Digital output 2	3. The terminals CME and COM are shorted
			through J1 before delivery.
	PR01A	NO contact of relay	
	PR01B	NC contact of relay	1. Contact capacity: 3A/AC 250 V, 1 A/DC 30
Relay		Common contact of	V
output	PR01C	relay 1	2. Do not use them as high-frequency digital
·	PR02A	NO contact of relay	outputs.
	PR02C	Common contact of relay 2	

For details about the operation of programmable extension cards, see the MSI350 Series Inverter Communication Extension Card Operation Manual.

Appendix B Technical data

B.1 What this chapter contains

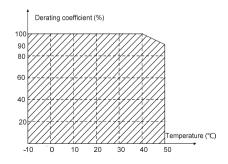
This chapter describes the technical data of the inverter and its compliance to CE and other quality certification systems.

B.2 Derated application

B.2.1 Capacity

Choose an inverter based on the rated current and power of the motor. To endure the rated power of the motor, the rated output current of the inverter must be larger or equal to the rated current of the motor. The rated power of the inverter must be higher or equal to that of the motor.

Note:

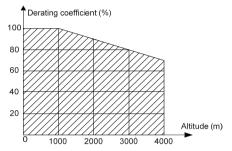

- The maximum allowable shaft power of the motor is limited to 1.5 times the rated power of the motor. If the limit is exceeded, the inverter automatically restricts the torque and current of the motor. This function effectively protect the input shaft against overload.
- 2. The rated capacity is the capacity at the ambient temperature of 40°C.
- You need to check and ensure that the power flowing through the common DC connection in the common DC system does not exceed the rated power of the motor.

B.2.2 Derating

If the ambient temperature on the site where the inverter is installed exceeds 40°C, the altitude exceeds 1000 m, or the switching frequency is changed from 4 kHz to 8, 12, or 15 kHz, the inverter needs to be derated.

B.2.2.1 Derating due to temperature

When the temperature ranges from +40°C to +50°C, the rated output current is derated by 1% for each increased 1°C. For the actual derating, see the following figure.



Note: It is not recommended to use the inverter at a temperature higher than 50°C. If you do, you shall be held accountable for the consequences caused.

B.2.2.2 Derating due to altitude

When the altitude of the site where the inverter is installed is lower than 1000 m, the inverter can run at the rated power. If the altitude is higher than 1000 m, the allowable output power is derated. For details about the derating, see the following figure.

B.2.2.3 Derating due to carrier frequency

The power of MSI350 series inverters varies according to carrier frequencies. The rated power of an inverter is defined based on the carrier frequency set in factory. If the carrier frequency exceeds the factory setting, the power of the inverter is derated by 10% for each increased 1 kHz.

B.3 Grid specifications

Crid voltage	AC 3PH 380V (-15%)-440V (+10%)
Grid voltage	AC 3PH 520V (-15%)–690V (+10%)
	According to the definition in IEC 60439-1, the maximum allowable
	short-circuit current at the incoming end is 100 kA. Therefore, the
Short-circuit capacity	inverter is applicable to scenarios where the transmitted current in the
	circuit is no larger than 100 kA when the inverter runs at the maximum
	rated voltage.
Frequency 50/60 Hz±5%, with a maximum change rate of 20%/s	

B.4 Motor connection data

Motor type	asynchronous induction motor or permanent-magnet synchronous motor
Voltage	0-U1 (rated voltage of the motor), 3PH symmetrical, Umax (rated voltage of the inverter) at the field-weakening point
Short-circuit protection	The short-circuit protection for the motor output meets the requirements of IEC 61800-5-1.

Frequency	0–400 Hz					
Frequency resolution	0.01 Hz					
Current	See the rated current.					
Power limit	1.5 times of the rated power of the motor					
Field-weakening point	10–400 Hz					
Carrier frequency	4, 8, 12, or 15 kHz					

B.4.1 EMC compatibility and motor cable length

The following table describes the maximum motor cable lengths that meet the requirements of the EU EMC directive (2004/108/EC) when the carrier frequency is 4 kHz.

All models (with external EMC filters)	Maximum motor cable length (m)					
Environment category II (C3)	30					
Environment category I (C2)	30					

You can learn the maximum length of the motor cable through the running parameters of the inverter. To understand the accurate maximum cable length for using an external EMC filter, contact the local MORGENSEN office.

For description about the environments categories I (C2) and II (C3), see section "EMC regulations".

B.5 Application standards

The following table describes the standards that the inverters comply with.

The following table describes the standards that the inverters semply with:							
EN/ISO 13849-1:2008	Safety of machinery—Safety-related parts of control systems—Part 1: General principles for design						
IEC/EN 60204-1:2006	Safety of machinery—Electrical equipment of machines. Part 1: General requirements						
IEC/EN 62061:2005	Safety of machinery—Safety-related functional safety of electrical, electronic, and programmable electronic control systems						
IEC/EN 61800-3:2004	Adjustable speed electrical power drive systems—Part 3:EMC requirements and specific test methods						
IEC/EN 61800-5- 1:2007	Adjustable speed electrical power drive systems—Part 5-1: Safety requirements—Electrical, thermal and energy						
IEC/EN 61800-5- 2:2007	Adjustable speed electrical power drive systems—Part 5-2: Safety requirements—Function						

B.5.1 CE marking

The CE marking on the name plate of an inverter indicates that the inverter is CE-compliant, meeting the regulations of the European low-voltage directive (2006/95/EC) and EMC directive (2004/108/EC).

B.5.2 EMC compliance declaration

European union (EU) stipulates that the electric and electrical devices sold in Europe cannot generate electromagnetic disturbance that exceeds the limits stipulated in related standards, and can work properly in environments with certain electromagnetic interference. The EMC product standard (EN 61800-3:2004) describes the EMC standards and specific test methods for adjustable speed electrical power drive systems. Products must strictly follow these EMC regulations.

B.6 EMC regulations

The EMC product standard (EN 61800-3:2004) describes the EMC requirements on inverters.

Application environment categories

Category I: Civilian environments, including application scenarios where inverters are directly connected to the civil power supply low-voltage grids without intermediate transformers

Category II: All environments except those in Category I.

Inverter categories

C1: Rated voltage lower than 1000 V, applied to environments of Category I.

C2: Rated voltage lower than 1000 V, non-plug, socket, or mobile devices; power drive systems that must be installed and operated by specialized personnel when applied to environments of Category I

Note: The EMC standard IEC/EN 61800-3 no longer restricts the power distribution of inverters, but it specifies their use, installation, and commissioning. Specialized personnel or organizations must have the necessary skills (including the EMC-related knowledge) for installing and/or performing commissioning on the electrical drive systems.

C3: Rated voltage lower than 1000 V, applied to environments of Category II. They cannot be applied to environments of Category I.

C4: Rated voltage higher than 1000 V, or rated current higher or equal to 400 A, applied to complex systems in environments of Category II.

B.6.1 Inverter category of C2

The induction disturbance limit meets the following stipulations:

- Select an optional EMC filter according to Appendix D and install it following the description in the EMC filter manual.
- 2. Select the motor and control cables according to the description in the manual.
- 3. Install the inverter according to the description in the manual.
- 4. For the maximum length of the motor cable when the switching frequency is 4 kHz, see section "EMC compatibility and motor cable length".

Currently in environments in China, the inverter may generate radio interference, you need to take measures to reduce the interference.

B.6.2 Inverter category of C3

The anti-interference performance of the inverter meets the requirements of environments Category II in the IEC/EN 61800-3 standard.

The induction disturbance limit meets the following stipulations:

- Select an optional EMC filter according to Appendix D and install it following the description in the EMC filter manual.
- 2. Select the motor and control cables according to the description in the manual.
- 3. Install the inverter according to the description in the manual.
- 4. For the maximum length of the motor cable when the switching frequency is 4 kHz, see section "EMC compatibility and motor cable length".

Inverters of C3 category cannot be applied to civilian low-voltage common grids. When applied to such grids, the inverter may generate radio frequency electromagnetic interference.

Appendix C Dimension drawings

C.1 What this chapter contains

This chapter describes the dimension drawings of MSI350 series inverters. The dimension unit used in the drawings is mm.

C.2 Keypad structure

C.2.1 Structure diagram

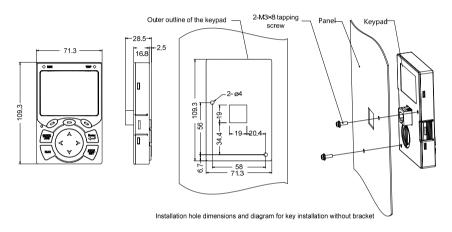


Fig C.1 Keypad structure diagram

C.2.2 Keypad installation bracket

Note: When installing an external keypad, you can directly use threaded screws or a keypad bracket. For inverters of 380 V, 1.5 to 75 kW, you need to use optional keypad installation brackets. For those of 380 V, 90 to 500 kW and 660 V, 22 to 630 kW, you can use optional brackets or use the standard keypad brackets externally.

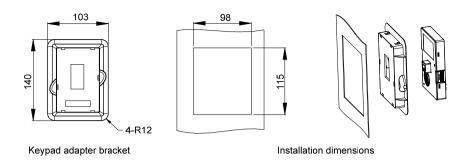


Fig C.2 Keypad installation bracket (optional) for inverters of 380 V, 1.5 to 500 kW and 660 V, 22 to 630 kW

C.3 Inverter structure

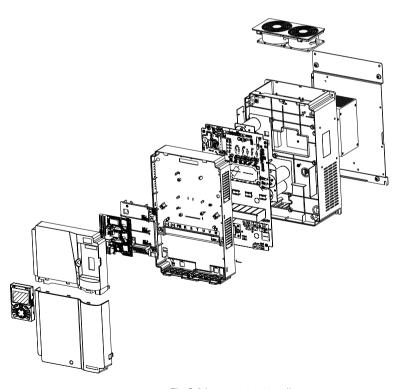


Fig C.3 Inverter structure diagram

C.4 Dimensions of Inverters of AC 3PH 380V (-15%)-440V (+10%)

C.4.1 Wall-mounting dimensions

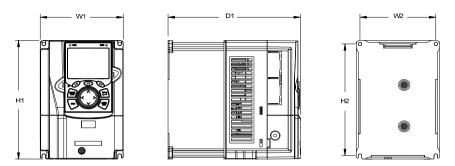


Fig C.4 Wall-mounting diagram of inverters of 380 V, 1.5 to 37 kW

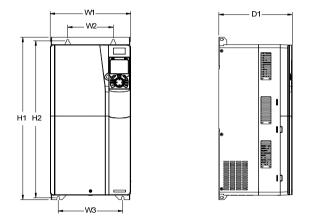


Fig C.5 Wall-mounting diagram of inverters of 380 V, 45 to 75 kW

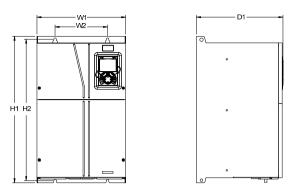
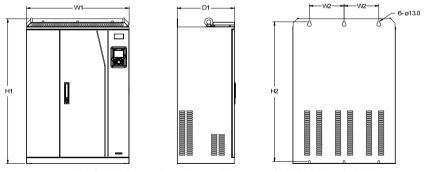
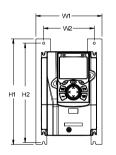


Fig C.6 Wall-mounting diagram of inverters of 380 V, 90 to 110 kW



Fig C.7 Wall-mounting diagram of inverters of 380 V, 132 to 200 kW




Fig C.8 Wall-mounting diagram of inverters of 380 V, 220 to 315 kW

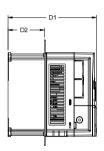


Table C.1 Wall-mounting dimensions of 380 V inverters (unit: mm)

Inverter specification	W1	W2	W3	Н1	H2	D1	Installation hole diameter	Fixing screw
1.5kW-2.2kW	126	115	-	186	175	185	5	M4
4kW-5.5kW	126	115	-	186	175	201	5	M4
7.5kW	146	131	-	256	243.5	192	6	M5
11kW-15kW	170	151	-	320	303.5	220	6	M5
18.5kW–22kW	200	185	-	340.6	328.6	208	6	M5
30kW-37kW	250	230	-	400	380	223	6	M5
45kW-75kW	282	160	226	560	542	258	9	M8
90kW-110kW	338	200	-	554	535	330	10	M8
132kW-200kW	500	180	-	870	850	360	11	M10
220kW-315kW	680	230	-	960	926	380	13	M12

C.4.2 Flange installation dimensions

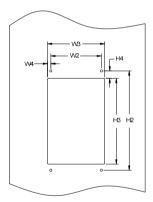
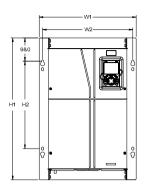
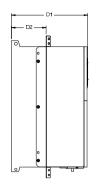




Fig C.9 Flange installation diagram of inverters of 380 V, 1.5 to 75 kW

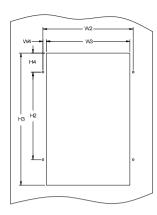
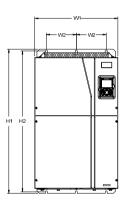



Fig C.10 Flange installation diagram of inverters of 380 V, 90 to 110 kW

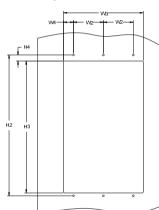


Fig C.11 Flange installation diagram of inverters of 380 V, 132 to 200 kW

Table C.2 Flange installation dimensions of 380 V inverters (unit: mm)

Inverter specification	W1	W2	W3	W4	H1	H2	Н3	Н4	D1	D2	Installation hole diameter	Fixing screw
1.5kW-2.2kW	150.2	115	130	7.5	234	220	190	13.5	185	65.5	5	M4
4kW-5.5kW	150.2	115	130	7.5	234	220	190	13.5	201	83	5	M4
7.5kW	170.2	131	150	9.5	292	276	260	6	192	84.5	6	M5
11kW–15kW	191.2	151	174	11.5	370	351	324	12	220	113	6	M5
18.5kW-22kW	266	250	224	13	371	250	350.6	20.3	208	104	6	M5
30kW-37kW	316	300	274	13	430	300	410	55	223	118.3	6	M5
45kW-75kW	352	332	306	12	580	400	570	80	258	133.8	9	M8

	nverter cification	W1	W2	W3	W4	H1	H2	НЗ	H4	D1	D2	Installation hole diameter	Fixing screw
90k	W–110kW	418.5	389.5	361	14.2	600	370	559	108.5	330	149.5	10	M8
132k	W-200kW	500	180	480	60	870	850	796	37	360	178.5	11	M10

C.4.3 Floor installation dimensions

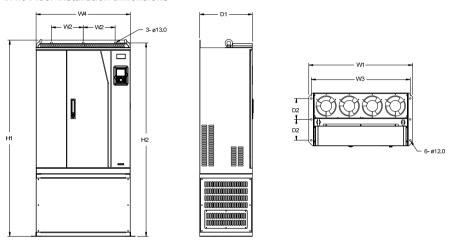


Fig C.12 Floor installation diagram of inverters of 380 V, 220 to 315 kW



Fig C.13 Floor installation diagram of inverters of 380 V, 355 to 500 kW

Table C.3 Floor installation dimensions of 380 V inverters (unit: mm)

Inverter specification	W1	W2	W3	W4	H1	H2	D1	D2	Installation hole diameter	Fixing screw
220kW-315kW	750	230	714	680	1410	1390	380	150	13\12	M12/M10
355kW-500kW	620	230	572	-	1700	1678	560	240	22\12	M20/M10

C.5 Dimensions of Inverters of AC 3PH 520V (-15%)-690V (+10%)

C.5.1 Wall-mounting dimensions

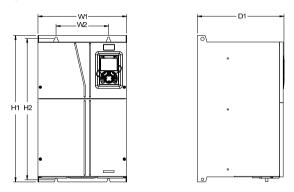


Fig C.14 Wall-mounting diagram of inverters of 660 V, 22 to 132 kW

Fig C.15 Wall-mounting diagram of inverters of 660 V, 160 to 220 kW



Fig C.16 Wall-mounting diagram of inverters of 660 V, 250 to 355 kW

Table C.4 Wall-mounting dimensions of 660 V inverters (unit: mm)

Inverter specification	W1	W2	Н1	H2	D1	Installation hole diameter	Fixing screw
22kW-45kW	270	130	555	540	325	7	M6
55kW-132kW	325	200	680	661	365	9.5	M8
160kW-220kW	500	180	870	850	360	11	M10
250kW-355kW	680	230	960	926	380	13	M12

C.5.2 Flange installation dimensions

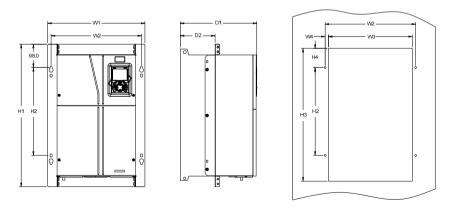


Fig C.17 Flange installation diagram of inverters of 660 V, 22 to 132 kW

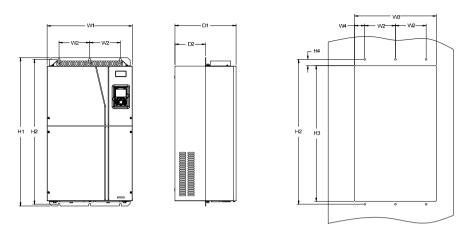


Fig C.18 Flange installation diagram of inverters of 660 V, 160 to 220 kW

Table C.5 Flange installation dimensions of 660 V inverters (unit: mm)

Inverter specification	W1	W2	W3	W4	H1	H2	Н3	Н4	D1	D2	Installation hole diameter	Fixing screw
22kW-45kW	270	130	261	65.5	555	540	516	17	325	167	7	M6
55kW-132kW	325	200	317	58.5	680	661	626	23	363	182	9.5	M8
160kW-220kW	500	180	480	60	870	850	796	37	358	178.5	11	M10

C.5.3 Floor installation dimensions

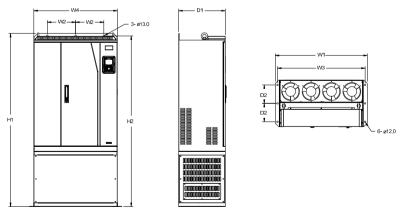


Fig C.19 Floor installation diagram of inverters of 660 V, 250 to 355 kW

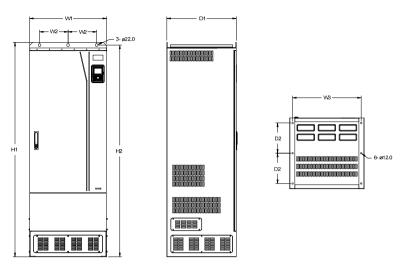
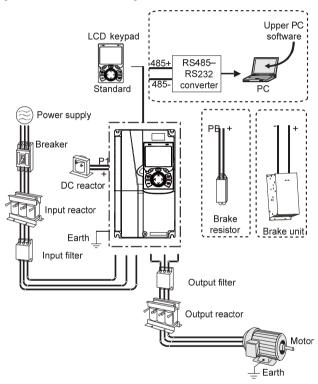


Fig C.20 Floor installation diagram of inverters of 660 V, 400 to 630 kW

Table C.6 Floor installation dimensions of 660 V inverters (unit: mm)

Inverter specification	W 1	W2	W3	W4	H1	H2	D1	D2	Installation hole diameter	Fixing screw
250kW-355kW	750	230	714	680	1410	1390	380	150	13\12	M12/M10
400kW-630kW	620	230	572	\	1700	1678	560	240	22\12	M20/M10


Appendix D Dimension drawings

D.1 What this chapter contains

This chapter describes how to select optional accessories of MSI350 series inverters.

D.2 Wiring of peripheral accessories

The following figure shows the external wiring of a MSI350 series inverter.

Note:

- Inverters of 380 V, 37 kW or lower are equipped with built-in brake units, and inverters of 45 kW to 110 kW can be configured with optional built-in brake units.
- 2. Inverters of 380 V, 18.5 kW to 110 kW are equipped with built-in DC reactors.
- 3. P1 terminals are equipped only for inverters of 380 V, 132 kW or higher, which enable the inverters to be directly connected to external DC reactors.

- 4. P1 terminals are equipped for all inverters of the 660 V series or higher, which enable the inverters to be directly connected to external DC reactors.
- The brake units MORGENSEN's MS-DBU series standard brake units. For details, see the MS-DBU operation manual.

Image	Name	Description
[]]	Cable	Accessory for signal transmission
EEE TUU	Breaker	Device for electric shock prevention and protection against short-to-ground that may cause current leakage and fire. Select residual-current circuit breakers (RCCBs) that are applicable to inverters and can restrict highorder harmonics, and of which the rated sensitive current for one inverter is larger than 30 mA.
	Input reactor	Accessories used to improve the current adjustment coefficient on the input side of the inverter, and thus restrict high-order harmonic
	DC reactor	currents. Inverters of 380 V, 132 kW or higher and 660 V series can be directly connected to external DC reactors.
200	Input filter	Accessory that restricts the electromagnetic interference generated by the inverter and transmitted to the public grid through the power cable. Try to install the input filter near the input terminal side of the inverter.
or O	Brake unit or brake resistor	Accessories used to consume the regenerative energy of the motor to reduce the deceleration time. Inverters of 380 V, 37 kW or lower need only to be configured with brake resistors, those of 380V, 132 kW or higher and 660 V series also need to be configured with brake units, and those of 380V, 45 kW to 110 kW can be configured with optional built-in brake units.
500	Output filter	Accessory used to restrict interference generated in the wiring area on the output side

Image	Name	Description
		of the inverter. Try to install the output filter near
		the output terminal side of the inverter.
	Output reactor	Accessory used to lengthen the valid transmission distance of the inverter, which effectively restrict the transient high voltage
		generated during the switch-on and switch-off
		of the IGBT module of the inverter.

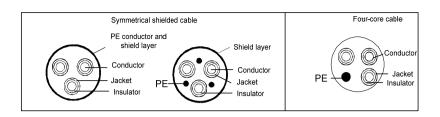
D.3 Power supply

Refer to the electrical installation.

Ensure that the voltage class of the inverter is consistent with that of the grid.

D.4 Cables

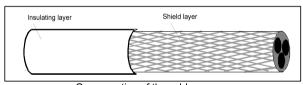
D.4.1 Power cables


The sizes of the input power cables and motor cables must meet the local regulation.

- The input power cables and motor cables must be able to carry the corresponding load currents.
- The maximum temperature margin of the motor cables in continuous operation cannot be lower than 70°C.
- The conductivity of the PE grounding conductor is the same as that of the phase conductor, that
 is, the cross-sectional areas are the same.
- For details about the EMC requirements, see Appendix B "Technical data."

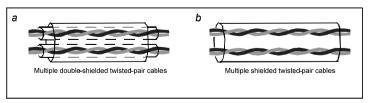
To meet the EMC requirements stipulated in the CE standards, you must use symmetrical shielded cables as motor cables (as shown in the following figure).

Four-core cables can be used as input cables, but symmetrical shielded cables are recommended. Compared with four-core cables, symmetrical shielded cables can reduce electromagnetic radiation as well as the current and loss of the motor cables.



Note: If the conductivity of the shield layer of the motor cables cannot meet the requirements, separate PE conductors must be used.

To protect the conductors, the cross-sectional area of the shielded cables must be the same as that of the phase conductors if the cable and conductor are made of materials of the same type. This reduces grounding resistance, and thus improves impedance continuity.


To effectively restrict the emission and conduction of radio frequency (RF) interference, the conductivity of the shielded cable must at least be 1/10 of the conductivity of the phase conductor. This requirement can be well met by a copper or aluminium shield layer. The following figure shows the minimum requirement on motor cables of an inverter. The cable must consist of a layer of spiral-shaped copper strips. The denser the shield layer is, the more effectively the electromagnetic interference is restricted.

Cross-section of the cable

D.4.2 Control cables

All analog control cables and cables used for frequency input must be shielded cables. Analog signal cables need to be double-shielded twisted-pair cables (as shown in figure a). Use one separate shielded twisted pair for each signal. Do not use the same ground wire for different analog signals.

Power cable arrangement

For low-voltage digital signals, double-shielded cables are recommended, but shielded or unshielded twisted pairs (as shown in figure b) also can be used. For frequency signals, however, only shielded cables can be used.

Relay cables need to be those with metal braided shield layers.

Keypads need to be connected by using network cables. In complicated electromagnetic environments, shielded network cables are recommended.

Note: Analog signals and digital signals cannot use the same cables, and their cables must be arranged separately.

Do not perform any voltage endurance or insulation resistance tests, such as high-voltage insulation tests or using a megameter to measure the insulation resistance, on the inverter or its components. Insulation and voltage endurance tests have been performed between the main circuit and chassis of each inverter before delivery. In addition, voltage limiting circuits that can automatically cut off the test voltage are configured inside the inverters.

Note: Check the insulation conditions of the input power cable of an inverter according to the local regulations before connecting it.

D.4.2.1 AC 3PH 380V (-15%)-440V (+10%)

Inverter model	cable	ble size Size of connectable cable (mm²)			(mm²)			Terminal screw	ing
	RST UVW	PE	RST UVW	P1, (+)	PB, (+), (-)	PE	tion	(Nm)	
MSI350-1R5G-4	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5	
MSI350-2R2G-4	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5	
MSI350-004G-4	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5	
MSI350-5R5G-4	2.5	2.5	2.5–6	2.5–6	2.5–6	2.5–6	M4	1.2–1.5	
MSI350-7R5G-4	4	4	2.5–6	4–6	4–6	2.5–6	M4	1.2–1.5	
MSI350-011G-4	6	6	4–10	4–10	4–10	4–10	M5	2.3	
MSI350-015G-4	6	6	4–10	4–10	4–10	4–10	M5	2.3	
MSI350-018G-4	10	10	10–16	10–16	10–16	10–16	M5	2.3	
MSI350-022G-4	16	16	10–16	10–16	10–16	10–16	M5	2.3	
MSI350-030G-4	25	16	25–50	25–50	25–50	16–25	M6	2.5	
MSI350-037G-4	25	16	25–50	25–50	25–50	16–25	M6	2.5	
MSI350-045G-4	35	16	35–70	35–70	35–70	16–35	M8	10	
MSI350-055G-4	50	25	35–70	35–70	35–70	16–35	M8	10	
MSI350-075G-4	70	35	35–70	35–70	35–70	16–35	M8	10	
MSI350-090G-4	95	50	70–120	70–120	70–120	50–70	M12	35	
MSI350-110G-4	120	70	70–120	70–120	70–120	50–70	M12	35	
MSI350-132G-4	185	95	95–300	95–300	95–300	95–240			
MSI350-160G-4	240	120	95–300	95–300	95–300	120–240			
MSI350-185G-4	95×2P	95	95–150	70–150	70–150	35–95			
MSI350-200G-4	95×2P	120	95×2P –150×2P	95×2P –150×2P	95×2P –150×2P	120–240	Nuts are	used as	
MSI350-220G-4	150×2P	150	95×2P – 150×2P	95×2P – 150×2P	95×2P – 150×2P	150–240	terminals recommen		
MSI350-250G-4	95×4P	95×2P	95×4P –150×4P	95×4P -150×4P	95×4P -150×4P	95×2P –150×2P	you use a or sle		
MSI350-280G-4	95×4P	95×2P	95×4P –150×4P	95×4P -150×4P	95×4P -150×4P	95×2P -150×2P			
MSI350-315G-4	95×4P	95×4P	95×4P –150×4P	95×4P –150×4P	95×4P -150×4P	95×2P –150×2P			

Inverter model	Recommon cable (mi	size	Size of connectable cable (mm²)			Terminal screw	ing	
	RST UVW	PE	RST UVW	P1, (+)	PB, (+), (-)	PE	specifica tion	(Nm)
MSI350-355G-4	95×4P	95×4P	95×4P	95×4P	95×4P	95×2P		
MSI350-400G-4	150×4P	150×2P	-150×4P 95×4P -150×4P	-150×4P 95×4P -150×4P	-150×4P 95×4P -150×4P	-150×2P 95×2P -150×2P		
MSI350-450G-4	150*4P	150*2P	95×4P –150×4P	95×4P -150×4P	95×4P -150×4P	95×2P -150×2P		
MSI350-500G-4	150×4P	150×2P	95×4P –150×4P	95×4P -150×4P	95×4P -150×4P	95×2P –150×2P		

- Cables of the sizes recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100 m, and the current is the rated current.
- The terminals P1, (+), and (-) are used to connect to DC reactors and brake accessories.

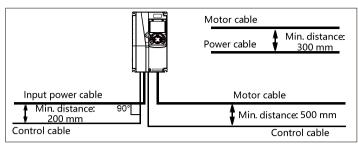
D.4.2.2 AC 3PH 520V (-15%)-690V (+10%)

	Recomr		Size of connectable cable (mm²)			Terminal	Tightening	
Inverter model	RST UVW	PE	RST UVW	P1, (+)	PB, (+), (-)	PE	screw specification	torque (Nm)
MSI350-022G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
MSI350-030G-6	10	10	10–16	6–16	6–10	10–16	M8	9–11
MSI350-037G-6	16	16	16–25	16–25	6–10	16–25	M8	9–11
MSI350-045G-6	16	16	16–25	16–35	16–25	16–25	M8	9–11
MSI350-055G-6	25	16	16–25	16–35	16–25	16–25	M10	18–23
MSI350-075G-6	35	16	35–50	25–50	25–50	16–50	M10	18–23
MSI350-090G-6	35	16	35–50	25–50	25–50	16–50	M10	18–23
MSI350-110G-6	50	25	50–95	50–95	25–95	25–95	M10	18–23
MSI350-132G-6	70	35	70–95	70–95	25–95	35–95	M10	18–23
MSI350-160G-6	95	50	95–150	95–150	25–150	50-150	Nuts are used as terminals, so it is recommended that you use a wrench or sleeve.	
MSI350-185G-6	95	50	95–150	95–150	25–150	50-150		
MSI350-200G-6	120	70	120-300	120-300	35–300	70–240		
MSI350-220G-6	185	95	120–300	120-300	35–300	95–240		

	Recomi		Size of	Size of connectable cable (mm²)			Terminal	Tightening
Inverter model	RST UVW	PE	RST UVW	P1, (+)	PB, (+), (-)	PE	screw specification	torque (Nm)
MSI350-250G-6	185	95	185–300	185–300	35–300	95–240		
MSI350-280G-6	240	120	240–300	240–300	70–300	120–240		
MSI350-315G-6	95×2P	120	95×2P– 150×2P	95×2P –150×2P	95×2P –150×2P	120–300		
MSI350-355G-6	95×2P	150	95×2P– 150×2P	95×2P –150×2P	95×2P –150×2P	150–300		
MSI350-400G-6	150×2P	150	150×2P- 300×2P	95×2P –150×2P	95×2P –150×2P	150–300		
MSI350-450G-6	95×4P	95×2P	95×4P –150×4P	95×4P –150×4P	95×4P –150×4P	95×2P –150×2P		
MSI350-500G-6	95×4P	95×2P	95×4P –150×4P	95×4P –150×4P	95×4P –150×4P	95×2P –150×2P		
MSI350-560G-6	95×4P	95×4P	95×4P –150×4P	95×4P –150×4P	95×4P –150×4P	95×4P –150×4P		
MSI350-630G-6	150×4P	150×2P	150×4P –300×4P	150×4P –300×4P	150×4P –300×4P	150×4P –240×4P		

- Cables of the sizes recommended for the main circuit can be used in scenarios where the ambient temperature is lower than 40°C, the wiring distance is shorter than 100 m, and the current is the rated current.
- 2. The terminals P1, (+), and (-) are used to connect to DC reactors and brake accessories.

D.4.3 Cable arrangement


Motor cables must be arranged away from other cables. The motor cables of several inverters can be arranged in parallel. It is recommended that you arrange the motor cables, input power cables, and control cables separately in different trays. The output dU/dt of the inverters may increase electromagnetic interference on other cables. Do not arrange other cables and the motor cables in parallel.

If a control cable and power cable must cross each other, ensure that the angle between them is 90 degrees.

The cable trays must be connected properly and well grounded. Aluminum trays can implement local equipotential.

The following figure shows the cable arrangement distance requirements.

Cable arrangement distances

D.4.4 Insulation inspection

Check the motor and the insulation conditions of the motor cable before running the motor.

- Ensure that the motor cable is connected to the motor, and then remove the motor cable from the U, V, and W output terminals of the inverter.
- Use a megameter of 500 V DC to measure the insulation resistance between each phase conductor and the protection grounding conductor. For details about the insulation resistance of the motor, see the description provided by the manufacturer.

Note: The insulation resistance is reduced if it is damp inside the motor. If it may be damp, you need to dry the motor and then measure the insulation resistance again.

D.5 Breaker and electromagnetic contractor

You need to add a fuse to prevent overload.

You need to configure a manually manipulated molded case circuit breaker (MCCB) between the AC power supply and inverter. The breaker must be locked in the open state to facilitate installation and inspection. The capacity of the breaker needs to be 1.5 to 2 times the rated current of the inverter.

According to the working principle and structure of breakers, if the manufacturer's regulation is not followed, hot ionized gases may escape from the breaker enclosure when a short-circuit occurs. To ensure safe use, exercise extra caution when installing and placing the breaker. Follow the manufacturer's instructions.

To ensure safety, you can configure an electromagnetic contactor on the input side to control the switch-on and switch-off of the main circuit power, so that the input power supply of the inverter can be effectively cut off when a system fault occurs.

D.5.1 Breakers and electromagnetic contactors for AC 3PH 380V (-15%)-440V (+10%)

		Breaker	Rated current of the
Inverter model	Fuse (A	(A)	contactor (A)
MSI350-1R5G-4	1	16	10
MSI350-2R2G-4	17.4	16	10
MSI350-004G-4	30	25	16
MSI350-5R5G-4	45	25	16
MSI350-7R5G-4	60	40	25
MSI350-011G-4	78	63	32
MSI350-015G-4	105	63	50
MSI350-018G-4	114	100	63
MSI350-022G-4	138	100	80
MSI350-030G-4	186	125	95
MSI350-037G-4	228	160	120
MSI350-045G-4	270	200	135
MSI350-055G-4	315	200	170
MSI350-075G-4	420	250	230
MSI350-090G-4	480	315	280
MSI350-110G-4	630	400	315
MSI350-132G-4	720	400	380
MSI350-160G-4	870	630	450
MSI350-185G-4	1110	630	580
MSI350-200G-4	1110	630	580
MSI350-220G-4	1230	800	630
MSI350-250G-4	1380	800	700
MSI350-280G-4	1500	1000	780
MSI350-315G-4	1740	1200	900
MSI350-355G-4	1860	1280	960
MSI350-400G-4	2010	1380	1035
MSI350-450G-4	2445	1630	1222
MSI350-500G-4	2505	1720	1290

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.

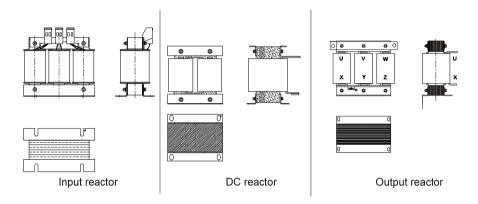
D.5.2 Breakers and electromagnetic contactors for AC 3PH 520V (-15%)-690V (+10%)

Inverter model	Fuse (A	Breaker (A)	Rated current of the contactor (A)		
MSI350-022G-6	105	63	50		

Inverter model	Fuse (A	Breaker (A)	Rated current of the contactor (A)
MSI350-030G-6	105	63	50
MSI350-037G-6	114	100	63
MSI350-045G-6	138	100	80
MSI350-055G-6	186	125	95
MSI350-075G-6	270	200	135
MSI350-090G-6	270	200	135
MSI350-110G-6	315	200	170
MSI350-132G-6	420	250	230
MSI350-160G-6	480	315	280
MSI350-185G-6	480	315	280
MSI350-200G-6	630	400	315
MSI350-220G-6	720	400	380
MSI350-250G-6	720	400	380
MSI350-280G-6	870	630	450
MSI350-315G-6	1110	630	580
MSI350-350G-6	1110	630	580
MSI350-400G-6	1230	800	630
MSI350-450G-6	1470	960	735
MSI350-500G-6	1500	1000	780
MSI350-560G-6	1740	1200	900
MSI350-630G-6	2010	1380	1035

Note: The accessory specifications described in the preceding table are ideal values. You can select accessories based on the actual market conditions, but try not to use those with lower values.

D.6 Reactors


When the voltage of the grid is high, the transient large current that flows into the input power circuit may damage rectifier components. You need to configure an AC reactor on the input side, which can also improve the current adjustment coefficient on the input side.

When the distance between the inverter and motor is longer than 50 m, the parasitic capacitance between the long cable and ground may cause large leakage current, and overcurrent protection of the inverter may be frequently triggered. To prevent this from happening and avoid damage to the motor insulator, compensation must be made by adding an output reactor. When an inverter is used to drive multiple motors, take the total length of the motor cables (that is, sum of the lengths of the motor cables) into account. When the total length is longer than 50 m, an output reactor must be added on the output side of the inverter. If the distance between the inverter and motor is 50 m to 100 m, select the reactor according to the following table. If the distance is longer than 100 m, contact

MORGENSEN's technical support technicians.

DC reactors can be directly connected to inverters of 380 V, 132 kW or higher and the 660 V series. DC reactors can improve the power factor, avoid damage to bridge rectifiers caused due to large input current of the inverter when large-capacity transformers are connected, and also avoid damage to the rectification circuit caused due to harmonics generated by grid voltage transients or phase-control loads.

D.6.1 Reactors for AC 3PH 380V (-15%)-440V (+10%)

Inverter model	Input reactor	DC reactor	Output reactor
MSI350-1R5G-4	MS-ACL2-1R5-4	1	MS-OCL2-1R5-4
MSI350-2R2G-4	MS-ACL2-2R2-4	1	MS-OCL2-2R2-4
MSI350-004G-4	MS-ACL2-004-4	1	MS-OCL2-004-4
MSI350-5R5G-4	MS-ACL2-5R5-4	1	MS-OCL2-5R5-4
MSI350-7R5G-4	MS-ACL2-7R5-4	1	MS-OCL2-7R5-4
MSI350-011G-4	MS-ACL2-011-4	1	MS-OCL2-011-4
MSI350-015G-4	MS-ACL2-015-4	1	MS-OCL2-015-4
MSI350-018G-4	MS-ACL2-018-4	1	MS-OCL2-018-4
MSI350-022G-4	MS-ACL2-022-4	1	MS-OCL2-022-4
MSI350-030G-4	MS-ACL2-037-4	1	MS-OCL2-037-4
MSI350-037G-4	MS-ACL2-037-4	1	MS-OCL2-037-4
MSI350-045G-4	MS-ACL2-045-4	1	MS-OCL2-045-4
MSI350-055G-4	MS-ACL2-055-4	1	MS-OCL2-055-4
MSI350-075G-4	MS-ACL2-075-4	1	MS-OCL2-075-4
MSI350-090G-4	MS-ACL2-110-4	1	MS-OCL2-110-4
MSI350-110G-4	MS-ACL2-110-4	1	MS-OCL2-110-4
MSI350-132G-4	MS-ACL2-160-4	MS-DCL2-132-4	MS-OCL2-200-4

Inverter model	Input reactor	DC reactor	Output reactor
MSI350-160G-4	MS-ACL2-160-4	MS-DCL2-160-4	MS-OCL2-200-4
MSI350-185G-4	MS-ACL2-200-4	MS-DCL2-200-4	MS-OCL2-200-4
MSI350-200G-4	MS-ACL2-200-4	MS-DCL2-220-4	MS-OCL2-200-4
MSI350-220G-4	MS-ACL2-280-4	MS-DCL2-280-4	MS-OCL2-280-4
MSI350-250G-4	MS-ACL2-280-4	MS-DCL2-280-4	MS-OCL2-280-4
MSI350-280G-4	MS-ACL2-280-4	MS-DCL2-280-4	MS-OCL2-280-4
MSI350-315G-4	MS-ACL2-350-4	MS-DCL2-315-4	MS-OCL2-350-4
MSI350-350G-4	Standard	MS-DCL2-400-4	MS-OCL2-350-4
MSI350-400G-4	Standard	MS-DCL2-400-4	MS-OCL2-400-4
MSI350-450G-4	Standard	MS-DCL2-500-4	MS-OCL2-500-4
MSI350-500G-4	Standard	MS-DCL2-500-4	MS-OCL2-500-4

- 1. The rated input voltage drop of input reactors is 2%±15%.
- The current adjustment coefficient on the input side of the inverter is higher than 90% after a DC reactor is configured.
- 3. The rated output voltage drop of output reactors is 1%±15%.
- 4. The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

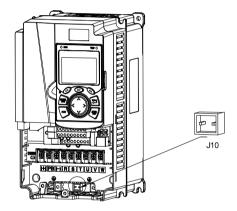
D.6.2 Reactors for AC 3PH 520V (-15%)-690V (+10%)

Inverter model	Input reactor	DC reactor	Output reactor
MSI350-022G-6	MS-ACL2-030G-6	MS-DCL2-030G-	MS-OCL2-030G-
MS1350-022G-6	MS-ACL2-030G-6	6	6
MSI350-030G-6	MS-ACL2-030G-6	MS-DCL2-030G-	MS-OCL2-030G-
WISI350-030G-0	WIS-ACL2-030G-0	6	6
MSI350-037G-6	MS-ACL2-055G-6	MS-DCL2-055G-	MS-OCL2-055G-
MS1350-037G-6	MS-ACLZ-055G-6	6	6
MCI2FO 04FO 6	MC ACLO OFFO C	MS-DCL2-055G-	MS-OCL2-055G-
MSI350-045G-6	MS-ACL2-055G-6	6	6
MCI2FO OFFO C	MS-ACL2-055G-6	MS-DCL2-055G-	MS-OCL2-055G-
MSI350-055G-6	MS-ACLZ-055G-6	6	6
MSI350-075G-6	MS-ACL2-110G-6	MS-DCL2110G-6	MS-OCL2-110G-6
M01050 0000 0	MO AOLO 4400 C	MS-DCL2-110G-	MO 001 0 4400 0
MSI350-090G-6	MS-ACL2-110G-6	6	MS-OCL2-110G-6
MC1250 4400 C	MC ACL 2 440C 6	MS-DCL2-110G-	MC 0012 4400 6
MSI350-110G-6	MS-ACL2-110G-6	6	MS-OCL2-110G-6
MSI350-132G-6	MS-ACL2-185G-6	MS-DCL2-185G-	MS-OCL2-185G-

Inverter model	Input reactor	DC reactor	Output reactor
		6	6
MC1250 4600 6	MC ACL 2 405C C	MS-DCL2-185G-	MS-OCL2-185G-
MSI350-160G-6	MS-ACL2-185G-6	6	6
MSI350-185G-6	MS-ACL2-185G-6	MS-DCL2-185G-	MS-OCL2-185G-
W31330-163G-0	WIS-ACL2-165G-0	6	6
MSI350-200G-6	MS-ACL2-250G-6	MS-DCL2-250G-	MS-OCL2-250G-
W31330-200G-0	WIS-ACL2-250G-0	6	6
MSI350-220G-6	MS-ACL2-250G-6	MS-DCL2-250G-	MS-OCL2-250G-
WI31330-220G-0	WIS-ACL2-230G-0	6	6
MSI350-250G-6	MS-ACL2-250G-6	MS-DCL2-250G-	MS-OCL2-250G-
WIG1330-230G-0	WO-AOLZ-2300-0	6	6
MSI350-280G-6	MS-ACL2-350G-6	MS-DCL2-350G-	MS-OCL2-350G-
WIG1000 2000 0	WIG TIGEZ GOOG G	6	6
MSI350-315G-6	MS-ACL2-350G-6	MS-DCL2-350G-	MS-OCL2-350G-
11101000 0100 0	MO TIOLE GOOD O	6	6
MSI350-350G-6	MS-ACL2-350G-6	MS-DCL2-350G-	MS-OCL2-350G-
		6	6
MSI350-400G-6	Standard	MS-DCL2-400G-	MS-OCL2-400G-
		6	6
MSI350-450G-6	Standard	MS-DCL2-560G-	MS-OCL2-560G-
		6	6
MSI350-500G-6	Standard	MS-DCL2-560G-	MS-OCL2-560G-
		6	6
MSI350-560G-6	Standard	MS-DCL2-560G-	MS-OCL2-560G-
		6	6
MSI350-630G-6	Standard	MS-DCL2-630G-	MS-OCL2-630G-
		6	6

- 1. The rated input voltage drop of input reactors is 2%±15%.
- The current adjustment coefficient on the input side of the inverter is higher than 90% after a DC reactor is configured.
- 3. The rated output voltage drop of output reactors is 1%±15%.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

D.7 Filters


J10 is not connected in factory for inverters of 380V (≤ 110kW). Connect the J10 packaged with the manual if the requirements of level C3 need to be met;

J10 is connected in factory for inverters of 380V (≥ 132kW), all of which meet the requirements of level C3

Note:

Disconnect J10 in the following situations:

- The EMC filter is applicable to the neutral-grounded grid system. If it is used for the IT grid system (that is, non-neutral grounded grid system), disconnect J10.
- If leakage protection occurs during configuration of a residual-current circuit breaker, disconnect J10.

Note: Do not connect C3 filters in IT power systems.

Interference filters on the input side can reduce the interference of inverters (when used) on the surrounding devices.

Noise filters on the output side can decrease the radio noise caused by the cables between inverters and motors and the leakage current of conducting wires.

MORGENSEN provides some of the filters for users to choose.

D.7.1 Filter model description

Field identifier	Field description
Α	MS-FLT: Name of the inverter filter series
	Filter type
В	P: Power input filter
	L: Output filter
	Voltage class
С	04: AC 3PH 380V (-15%)-440V (+10%)
	06: AC 3PH 520V (-15%)-690V (+10%)
D	3-digit code indicating the rated current. For example, 015 indicates 15 A.
	Filter performance
E	L: General
	H: High-performance
	Filter application environment
F	A: Environment Category I, C1 (EN 61800-3:2004)
F	B: Environment Category I, C2 (EN 61800-3:2004)
	C: Environment Category II, C3 (EN 61800-3:2004)

D.7.2 Filters for AC 3PH 380V (-15%)-440V (+10%)

Inverter model	Input filter	Output filter	
MSI350-1R5G-4	MO FLT DO AGOOL D	MO FLT LOAGOOL D	
MSI350-2R2G-4	MS-FLT-P04006L-B	MS-FLT-L04006L-B	
MSI350-004G-4	MO FLT DO 404CL D	MO FLT LOADAGE D	
MSI350-5R5G-4	MS-FLT-P04016L-B	MS-FLT-L04016L-B	
MSI350-7R5G-4	MS-FI T-P04032I -B	MS-FLT-L04032L-B	
MSI350-011G-4	MS-FLT-P04032L-B	WIS-FLT-LU4U32L-B	
MSI350-015G-4	MS-FLT-P04045L-B	MC FLT LOADAFL D	
MSI350-018G-4	MS-FLT-P04045L-B	MS-FLT-L04045L-B	
MSI350-022G-4	MS-FLT-P04065L-B	MS-FLT-L04065L-B	
MSI350-030G-4	MS-FLI-P04065L-B	MS-FLT-LU4005L-B	
MSI350-037G-4	MS-FLT-P04100L-B	MS ELT L 04400L B	
MSI350-045G-4	M3-FL1-P04 100L-B	MS-FLT-L04100L-B	
MSI350-055G-4	MS-FLT-P04150L-B	MS-FLT-L04150L-B	
MSI350-075G-4	M3-FL1-P04130L-B	WIS-PLT-L04 130L-B	
MSI350-090G-4			
MSI350-110G-4	MS-FLT-P04240L-B	MS-FLT-L04240L-B	
MSI350-132G-4			
MSI350-160G-4			
MSI350-185G-4	MS-FLT-P04400L-B	MS-FLT-L04400L-B	
MSI350-200G-4			

Inverter model	Input filter	Output filter
MSI350-220G-4		
MSI350-250G-4	MS-FLT-P04600L-B	MS-FLT-L04600L-B
MSI350-280G-4		
MSI350-315G-4		
MSI350-350G-4	MS-FLT-P04800L-B	MS-FLT-L04800L-B
MSI350-400G-4		
MSI350-450G-4	MC FLT D044000L D	MC FLT LOAGOOL B
MSI350-500G-4	MS-FLT-P041000L-B	MS-FLT-L041000L-B

- 1. The input EMI meets the C2 requirements after an input filter is configured.
- 2. The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

D.7.3 Filters for AC 3PH 520V (-15%)-690V (+10%)

Inverter model	Input filter	Output filter	
MSI350-022G-6			
MSI350-030G-6	MS-FLT-P06050H-B	MS-FLT-L06050H-B	
MSI350-037G-6			
MSI350-045G-6			
MSI350-055G-6	MO FLT DOCADOLL D	MO FIT LOCACOLL B	
MSI350-075G-6	MS-FLT-P06100H-B	MS-FLT-L06100H-B	
MSI350-090G-6			
MSI350-110G-6			
MSI350-132G-6	MC FLT DOCCOOLL D	MO FLT LOCOCOLL B	
MSI350-160G-6	MS-FLT-P06200H-B	MS-FLT-L06200H-B	
MSI350-185G-6			
MSI350-200G-6			
MSI350-220G-6	MS FLT DOSSOULD	MC FLT LOCADOLL B	
MSI350-250G-6	MS-FLT-P06300H-B	MS-FLT-L06300H-B	
MSI350-280G-6			
MSI350-315G-6	MC FLT DOCADOLL D	MC FIT LOCADOLL B	
MSI350-350G-6	MS-FLT-P06400H-B	MS-FLT-L06400H-B	
MSI350-400G-6			
MSI350-450G-6			
MSI350-500G-6	MS-FLT-P061000H-B MS-FLT-	MS-FLT-P061000H-B	
MSI350-560G-6			
MSI350-630G-6			

- 1. The input EMI meets the C2 requirements after an input filter is configured.
- The preceding table describes external accessories. You need to specify the ones you choose when purchasing accessories.

D.8 Brake system

D.8.1 Brake component selection

When an inverter driving a high-inertia load decelerates or needs to decelerate abruptly, the motor runs in the power generation state and transmits the load-carrying energy to the DC circuit of the inverter, causing the bus voltage of the inverter to rise. If the bus voltage exceeds a specific value, the inverter reports an overvoltage fault. To prevent this from happening, you need to configure brake components.

- The design, installation, commissioning, and operation of the device must be performed by trained and qualified professionals.
- Follow all the "Warning" instructions during the operation. Otherwise, major physical injuries or property loss may be caused.

- Only qualified electricians are allowed to perform the wiring. Otherwise, damage to the inverter or brake components may be caused.
- Read the brake resistor or unit instructions carefully before connecting them to the inverter.
- Connect brake resistors only to the terminals PB and (+), and brake units only to the terminals (+) and (-). Do not connect them to other terminals. Otherwise, damage to the brake circuit and inverter and fire may be caused.

Connect the brake components to the inverter according to the wiring diagram. If the wiring is not properly performed, damage to the inverter or other devices may be caused.

D.8.1.1 Brake units for AC 3PH 380V (-15%)-440V (+10%)

MSI350 series inverters of 380 V, 37 kW or lower are equipped with built-in brake units, and those of 380 V, 45 kW or higher need to be configured with external brake units. Inverters of 45 kW to 110 kW can be configured with optional built-in brake units, and after a built-in brake unit is configured, the inverter model is added with a suffix "-B", for example, MSI350-045G-4-B. Select brake resistors according to the specific requirements (such as the brake torque and brake usage requirements) on site.

Inverter model	Brake unit model	Resistance applicable for 100% brake torque (Ω)	power of brake resistor (kW)	Dissipated power of brake resistor (kW) 50% brake usage	, ,	Min. allowable brake resistance (Ω)
MSI350-1R5G-4		326	0.23	1.1	1.8	170
MSI350-2R2G-4		222	0.33	1.7	2.6	130
MSI350-004G-4		122	0.6	3	4.8	80
MSI350-5R5G-4		89	0.75	4.1	6.6	60
MSI350-7R5G-4		65	1.1	5.6	9	47
MSI350-011G-4	Built-in brake unit	44	1.7	8.3	13.2	31
MSI350-015G-4		32	2	11	18	23
MSI350-018G-4		27	3	14	22	19
MSI350-022G-4		22	3	17	26	17
MSI350-030G-4		17	5	23	36	17
MSI350-037G-4		13	6	28	44	11.7
MSI350-045G-4		10	7	34	54	
MSI350-055G-4	MS-DBU100H- 110-4	8	8	41	66	6.4
MSI350-075G-4	110-4	6.5	11	56	90	
MSI350-090G-4	MS-DBU100H-	5.4	14	68	108	4.4
MSI350-110G-4	160-4	4.5	17	83	132	4.4
MSI350-132G-4	MS-DBU100H- 220-4	3.7	20	99	158	3.2
MSI350-160G-4		3.1	24	120	192	
MSI350-185G-4	MS-DBU100H- 320-4	2.8	28	139	222	2.2
MSI350-200G-4	320-4	2.5	30	150	240	
MSI350-220G-4	MS-DBU100H-	2.2	33	165	264	1.0
MSI350-250G-4	400-4	2.0	38	188	300	1.8
MSI350-280G-4		3.6×2	21×2	105×2	168×2	
MSI350-315G-4	Two sets	3.2×2	24×2	118×2	189×2	2.2×2
MSI350-355G-4	MS-DBU100H- 320-4	2.8×2	27×2	132×2	210×2	2.2*2
MSI350-400G-4		2.4×2	30×2	150×2	240×2	

Inverter model	Brake unit model	Resistance applicable for 100% brake torque (Ω)	power of brake resistor (kW)	Dissipated power of brake resistor (kW) 50% brake usage	. ,	Min. allowable brake resistance (Ω)
MSI350-450G-4	Two sets	2.2×2	34×2	168×2	270×2	
MSI350-500G-4	MS-DBU100H- 400-4	2.0×2	38×2	186×2	300×2	1.8×2

- 1. Select brake resistors according to the resistance and power data provided by our company.
- The brake resistor may increase the brake torque of the inverter. The preceding table describes
 the resistance and power for 100% brake torque, 10% brake usage, 50% brake usage, and 80%
 brake usage. You can select the brake system based on the actual operation conditions.
- When using an external brake unit, set the brake voltage class of the brake unit properly by referring to the manual of the dynamic brake unit. If the voltage class is set incorrectly, the inverter may not run properly.

Do not use brake resistors whose resistance is lower than the specified minimum resistance. Inverters do not provide protection against overcurrent caused by resistors with low resistance.

❖ In scenarios where brake is frequently implemented, that is, the brake usage is greater than 10%, you need to select a brake resistor with higher power as required by the operation conditions according to the preceding table.

D.8.1.2 Brake units for AC 3PH 520V (-15%)-690V (+10%)

External brake units need to be configured for MSI350 series inverters of 660 V. Select brake resistors according to the specific requirements (such as the brake torque and brake usage requirements) on site.

Inverter model	Brake unit model	Resistance applicable for 100% brake torque (Ω)	•	power of brake resistor (kW)		Min. allowable brake resistance
MSI350-022G-6		55	4	17	27	
MSI350-030G-6		40.3	5	23	36	
MSI350-037G-6		32.7	6	28	44	
MSI350-045G-6	MS-DBU100H-110-6	26.9	7	34	54	10.0
MSI350-055G-6	WIS-DB0 100H-110-0	22.0	8	41	66	10.0
MSI350-075G-6		16.1	11	56	90	
MSI350-090G-6		13.4	14	68	108	
MSI350-110G-6		11.0	17	83	132	
MSI350-132G-6	MS-DBU100H-160-6	9.2	20	99	158	6.9
MSI350-160G-6	M3-DB0 100H-100-0	7.6	24	120	192	0.9
MSI350-185G-6		6.5	28	139	222	
MSI350-200G-6	MS-DBU100H-220-6	6.1	30	150	240	5.0
MSI350-220G-6		5.5	33	165	264	
MSI350-250G-6		4.8	38	188	300	
MSI350-280G-6	MS-DBU100H-320-6	4.3	42	210	336	3.4
MSI350-315G-6	M3-DB0 100H-320-0	3.8	47	236	378	3.4
MSI350-355G-6		3.5	53	263	420	
MSI350-400G-6	MS-DBU100H-400-6	3.0	60	300	480	2.8
MSI350-450G-6		5.5×2	34×2	168×2	270×2	
MSI350-500G-6	Two sets	4.8×2	38×2	188×2	300×2	3.4×2
MSI350-560G-6	MS-DBU100H-320-6	4.3×2	42×2	210×2	336×2	3.4^2
MSI350-630G-6		3.8×2	47×2	236×2	378×2	

- 1. Select brake resistors according to the resistance and power data provided by our company.
- The brake resistor may increase the brake torque of the inverter. The preceding table describes the resistance and power for 100% brake torque, 10% brake usage, 50% brake usage, and 80% brake usage. You can select the brake system based on the actual operation conditions.
- When using an external brake unit, set the brake voltage class of the brake unit properly by referring to the manual of the dynamic brake unit. If the voltage class is set incorrectly, the inverter may not run properly.

Do not use brake resistors whose resistance is lower than the specified minimum resistance. Inverters do not provide protection against overcurrent caused by resistors with low resistance.

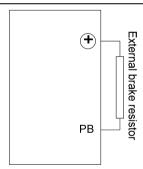
In scenarios where brake is frequently implemented, that is, the brake usage is greater than 10%, you need to select a brake resistor with higher power as required by the operation conditions according to the preceding table.

D.8.2 Brake resistor cable selection

Brake resistor cables need to be shielded cables.

D.8.3 Brake resistor installation

All resistors need to be installed in places with good cooling conditions.



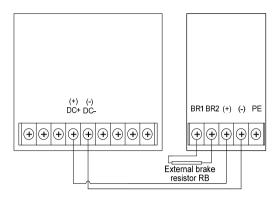
The materials near the brake resistor or brake unit must be non-flammable. The surface temperature of the resistor is high. Air flowing from the resistor is of hundreds of degrees Celsius. Prevent any materials from coming into contact with the resistor.

Installation of brake resistors

- ♦ Inverters of 380 V, 37 kW or lower need only external brake resistors.
- PB and (+) are the terminals for connecting brake resistors.

Installation of brake units

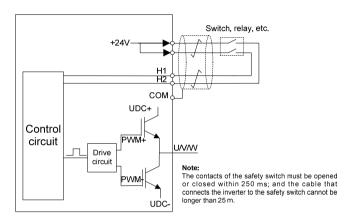
All inverters of the 660 V series need external brake units.



♦ (+) and (-) are the terminals for connecting brake units.

The connection cables between the (+) and (-) terminals of an inverter and those of a brake unit must be shorter than 5 m, and the connection cables between the BR1 and BR2 terminals of a brake unit and the terminals of a brake resistor must be shorter than 10 m.

The following figure shows the connection of one inverter to a dynamic brake unit.



Appendix E STO function description

Reference standards: IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, IEC 62061, ISO 13849-1, and IEC 61800-5-2

You can enable the safe torque off (STO) function to prevent unexpected startups when the main power supply of the drive is not switched off. The STO function switches off the drive output by turning off the drive signals to prevent unexpected startups of the motor (see the following figure). After the STO function is enabled, you can perform some-time operations (such as non-electrical cleaning in the lathe industry) and maintain the non-electrical components of the device without switching off the drive.

E.1 STO function logic table

The following table describes the input states and corresponding faults of the STO function.

STO input state	Corresponding fault
H1 and H2 opened	The STO function is triggered, and the drive stops running.
simultaneously	40: Safe torque off (STO)
H1 and H2 closed simultaneously	The STOP function is not triggered, and the drive runs properly.
	The STL1, STL2, or STL3 fault occurs.
One of H and H2 approad and	Fault code:
One of H and H2 opened, and the other closed	41: Channel H1 exception (STL1)
the other closed	42: Channel H2 exception (STL2)
	43: Channel H1 and H2 exceptions (STL3)

E.2 STO Channel delay description

The following table describes the trigger and indication delay of the STO channels.

STO mode	STO trigger and indication delay ^{1, 2}
CTO fault. CTI 4	Trigger delay < 10 ms
STO fault: STL1	Indication delay < 280 ms
OTO family OTLO	Trigger delay < 10 ms
STO fault: STL2	Indication delay < 280 ms
OTO family OTI 2	Trigger delay < 10 ms
STO fault: STL3	Indication delay < 280 ms
0.70 f-114, 0.70	Trigger delay < 10 ms
STO fault: STO	Indication delay < 100 ms

- STO function trigger delay: Time interval between trigger the STO function and switching off the drive output
- STO instruction delay: Time interval between trigger the STO function and STO output state indication

E.3 STO function installation checklist

Before installing the STO, check the items described in the following table to ensure that the STO function can be properly used.

ltem
Ensure that the drive can be run or stopped randomly during commissioning.
Stop the drive (if it is running), disconnect the input power supply, and isolate the drive from
the power cable through the switch.
Check the STO circuit connection according to the circuit diagram.
Check whether the shielding layer of the STO input cable is connected to the +24 V
reference ground COM.
Connect the power supply.
Test the STO function as follows after the motor stops running:
If the drive is running, send a stop command to it and wait until the shaft of the motor
stops rotating.
Activate the STO circuit and send a start command to the drive. Ensure that the motor
does not start.
Deactivate the STO circuit.
Restart the drive, and check whether the motor is running properly.
Test the STO function as follows when the motor is running:

- Start the drive. Ensure that the motor is running properly.
- · Activate the STO circuit.
- The drive reports an STO fault (for details, see section 7.5 "Inverter faults and corresponding solutions"). Ensure that the motor coasts to stop rotating.
- · Deactivate the STO circuit.
- Restart the drive, and check whether the motor is running properly.

Appendix F Acronyms and abbreviations

This chapter describes the acronyms and abbreviations of the terms or words that may be displayed on the interfaces of the keypad.

Term/word	Acronym/ abbreviation	Term/word	Acronym/ abbreviation
Accumulated/	Accum	Inverter	Inv
accumulation	71000111	mvorter	1117
Address	Addr	Leakage	Lkge
Amplitude	Amp	Lower limit	LowLim
Bridge	Brdg	Low-frequency	LwFreq
Coefficicent	Coeff	Low-speed	LwSp
Combination	Comb	Master/slave	M/S
Command	Cmd	Operation/operate/operator	Oper
Communication	Comm	Output	Outp
Compensation	Comp	Parameter	Param
Component	Cmpt	Password	Pwd
Consumption	Consume	Position	Pos
Control	Ctrl	Power	Pwr
Current	Cur	Proportional	Prop
Detection/detect	Det	Protect/protection	Prot
Differential	Diff	Quantity	Qty
Digital	Digi	Reference	Ref
Display	Disp	Resistance	Resis
Dynamic	Dyn	Reverse	REV
Eelectromotive force	Emf	Saturation	Satur
Emergency	Emer	Short-circuit	S/C
Error	Err	Source	Src
Factor	Fac	Speed	Spd
Feedback	Fdbk	Spindle	Spdl
Filter/filtering	Filt	Switch	Swt
Forward	FWD	System	SYS
Frequency	Freq	Temperature	Temp
Frequency point	FreqPnt	Terminal	Trml

Friction	Frict	Threshold	Thr
High-speed	HiSp	Torque	Trq
Identification/identity	ID	Upper limit	UpLim
Inductance	Ind	Value	Val
Initial	Init	Version	Ver
Input	Inp	Vibration	Vib
Instance	Inst	Voltage	Volt
Integral	Intg	Voltage point	VoltPnt
Interval	Intvl		

Appendix G Further information

G.1 Product and service queries

Should you have any queries about the product, contact the local MORGENSEN office. Provide the model and serial number of the product you query about.

G.2 Feedback on MORGENSEN inverter manuals

Your comments on our manuals are welcome. Visit www.morgensen.de,

G.3 Documents on the internet

You can find manuals and other product documents in the PDF format on the Internet. Visit www.morgensen.de

